16.如圖所示,一質(zhì)量為2m的平板車靜止在光滑水平面上.一質(zhì)量為m的滑塊靜止在平板車的左端.一質(zhì)量為m的子彈以初速度v0射入滑塊,子彈穿出滑塊后速度減為初速度的一半.滑塊最終恰好沒有脫離平板車.已知滑塊與車板間的動摩擦因數(shù)為μ.重力加速度為g.求:
(1)平板車的長度l;
(2)滑塊在車上相對于車滑行過程中,滑塊和車組成的系統(tǒng)克服摩擦力做功的平均功率P.

分析 (1)子彈射進滑塊的過程中,子彈與滑塊組成的系統(tǒng)動量守恒,由動量守恒定律求出滑塊的速度,此后滑塊與小車作用的過程中,小車與滑塊組成的系統(tǒng)動量守恒,滑塊最終恰好沒有脫離平板車,則兩者速度相等,由動量守恒定律和能量守恒定律列式求解l;
(2)滑塊在車上相對于車滑行過程中,對滑塊,根據(jù)動量定理求解時間,系統(tǒng)克服摩擦力做功W=μmgl,再根據(jù)P=$\frac{W}{t}$求解平均功率.

解答 解:(1)子彈射進滑塊的過程中,子彈與滑塊組成的系統(tǒng)動量守恒,以子彈的初速度方向為正方向,由動量守恒定律得:
0=mv1+m$•\frac{{v}_{0}}{2}$
解得:${v}_{1}=\frac{{v}_{0}}{2}$
此后滑塊與小車作用的過程中,小車與滑塊組成的系統(tǒng)動量守恒,滑塊最終恰好沒有脫離平板車,則兩者速度相等,由動量守恒定律得:
mv1=(m+2m)v
解得:v=$\frac{{v}_{0}}{6}$,
此過程中,根據(jù)能量守恒定律得:
$μmgl=\frac{1}{2}m{{v}_{1}}^{2}-\frac{1}{2}(m+2m){v}^{2}$
解得:l=$\frac{{{v}_{0}}^{2}}{12μg}$
(2)滑塊在車上相對于車滑行過程中,對滑塊,根據(jù)動量定理得:
-μmgt=mv-mv1
解得:t=$\frac{{v}_{0}}{3μg}$
此過程中,系統(tǒng)克服摩擦力做功W=μmgl=$\frac{m{{v}_{0}}^{2}}{12}$,
則滑塊和車組成的系統(tǒng)克服摩擦力做功的平均功率P=$\frac{W}{t}=\frac{μmg{v}_{0}}{4}$
答:(1)平板車的長度為$\frac{{{v}_{0}}^{2}}{12μg}$;
(2)滑塊在車上相對于車滑行過程中,滑塊和車組成的系統(tǒng)克服摩擦力做功的平均功率P為$\frac{μmg{v}_{0}}{4}$.

點評 本題關鍵是根據(jù)動量守恒定律、能量守恒定律以及動量定理列式求解,要求同學們能正確分析物體的受力情況和運動情況,注意應用動量守恒定律解題時要規(guī)定正方向,難度適中.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:選擇題

6.法拉第經(jīng)過近10年的不斷實驗,終于在1831年發(fā)現(xiàn)電磁感應現(xiàn)象.1831年9月24日法拉第用如圖所示的實驗裝置做了電磁感應實驗:擺成V形的兩根條形磁鐵接觸軟鐵棒(容易被磁化,磁化后磁性很容易消失)兩端,軟鐵棒上繞這一組線圈,并串聯(lián)了一只靈敏電流計.則( 。
A.若迅速拿走一側的條形磁鐵,靈敏電流計指針不會偏轉(zhuǎn)
B.若同時迅速拿走兩側的條形磁鐵,靈敏電流計指針不會偏轉(zhuǎn)
C.若迅速拿走右側的條形磁鐵,感應電流從B經(jīng)靈敏電流計流向A
D.若迅速拿走任一側的條形磁鐵,感應電流都是從A經(jīng)靈敏電流計流向B

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

7.如圖為氫原子能級的示意圖,現(xiàn)有大量的氫原子處于n=4的激發(fā)態(tài),當向低能級躍遷時輻射出若干不同頻率的光.關于這些光下列說法正確的是( 。
A.由n=4能級躍到n=1能級產(chǎn)生的光子能量最大
B.由n=2能級躍遷到n=1能級產(chǎn)生的光子頻率最小
C.這些氫原子總共可輻射出3種不同頻率的光
D.由n=4能級躍到n=3能級產(chǎn)生的光子波長最長

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

4.水平地面上有一高h=4.2m的豎直墻,現(xiàn)將一小球以v0=6.0m/s的速度,從離地面高H=5.0m的A點水平拋出,球以大小為10m/s速度正好撞到墻上的B點,不計空氣阻力,不計墻的厚度.取重力加速度g=10m/s2,求:
(1)小球從A到B所用的時間t;
(2)小球拋出點A到墻的水平距離s和 B離地面的高度hB;
(3)若仍將小球從原位置沿原方向拋出,為使小球能越過豎直墻,小球拋出時的初速度大小應滿足什么條件?

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

11.如圖所,在豎直平面內(nèi),AC為光滑絕緣的$\frac{1}{4}$圓形軌道,半徑為R,軌道最低點C的切線保待水平,在距離C點為R的下方是水平絕緣地板MN,N點直立高度為2R的絕緣擋版Np,虛線AP以下區(qū)域存在方向向上的勻強電場,同時,在OCMNP矩形區(qū)域內(nèi)還存在方向垂直紙面向外的勻強磁場.一個質(zhì)量為m,電荷量為q的帶電小球從軌道A點的正上方h高處自由釋放,沿A點的切線進入圓軌道做勻速圓周運動,小球從C點飛出,進入電、磁場區(qū)域后還做半徑為R的勻速圓周運動,不計小球與水平地板和豎直擋板碰撞的能量損失,重力加速度為g.求:
(1)勻強電場的場強E,勻強磁場的磁感應強度B;
(2)要使小球經(jīng)過一系列的運動后回到出發(fā)點,MN的長度應滿足什么條件?并求出小球從出發(fā)點至回到出發(fā)點的總時間.

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

1.如圖所示,在勻強磁場中有-個直角三角形區(qū)域MNP,一束電子以不同的速度v從M點沿MN射人磁場,不計電子的重力,關于電子在磁場中的運動情況下列說法中正確的是( 。
A.入射速度越大的電子,在三角形區(qū)域內(nèi)運動半徑越大
B.入射速度越大的電子,在三角形區(qū)域內(nèi)運動軌跡越長
C.從MP邊出射的電子,人射速度越大,在三角形區(qū)域內(nèi)時間越長
D.從NP邊出射的電子,人射速度越大,在三角形區(qū)域內(nèi)運動時間越長.

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

8.如圖所示,P是傾角為30°的光滑固定斜面.勁度系數(shù)為k的輕彈簧一端固定在斜面底端的固定擋板C上,另一端與質(zhì)量為m的物塊A相連接.細繩的一端系在物體A上,細繩跨過不計質(zhì)量和摩擦的定滑輪,另一端有一個不計質(zhì)量的小掛鉤.小掛鉤不掛任何物體時,物體A處于靜止狀態(tài),細繩與斜面平行.在小掛鉤上輕輕掛上一個質(zhì)量也為m的物塊B后,物塊A沿斜面向上運動.斜面足夠長,運動過程中B始終未接觸地面.已知重力加速度為g,求:
(1)物塊A處于靜止時,彈簧的壓縮量
(2)設物塊A沿斜面上升通過Q點位置時速度最大,求Q點到出發(fā)點的距離x0和最大速度vm
(3)把物塊B的質(zhì)量變?yōu)樵瓉淼腘倍(N>0.5),小明同學認為,只要N足夠大,就可以使物塊A沿斜面上滑到Q點時的速度增大到2vm,你認為是否正確?如果正確,請說明理由,如果不正確,請求出A沿斜面上升到Q點位置的速度的范圍.

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

14.如圖所示,直線a、拋物線b和c為某一穩(wěn)恒直流電源在純電阻電路中的總功率PE、輸出功率PR、電源內(nèi)部發(fā)熱功率Pr隨路端電壓U變化的圖象,但具體對應關系未知,根據(jù)圖象可判斷( 。
A.PE-U圖象對應圖線a:由圖知電動勢為9V,內(nèi)阻為3Ω
B.Pr-U圖象的對應圖線b:由圖知電動勢為3V,內(nèi)阻為1Ω
C.PR-U圖象的對應圖線c:圖象中任意電壓值對應的功率關系為PE=Pr+PR
D.外電路電阻為1.5Ω時,輸出功率最大為2.25W

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

15.如圖所示,細線AO、BO均與豎直方向成37°,細線CO上掛有質(zhì)量為m的物體,現(xiàn)保持O點位置不變,將細線BO沿順時針緩慢轉(zhuǎn)至水平方向,則( 。
A.細線AO上的拉力先變小后變大B.細線AO上的拉力先變大后變小
C.細線BO上的拉力先變小后變大D.細線BO上的拉力一直變大

查看答案和解析>>

同步練習冊答案