18.如圖所示,兩根正對的平行金屬直軌道MN、M′N′位于同一水平面上,兩軌道之間的距離l=0.50m.軌道的MN′端之間接一阻值R=0.40Ω的定值電阻,NN′端與兩條位于豎直面內(nèi)的半圓形光滑金屬軌道NP、N′P′平滑連接,兩半圓軌道的半徑均為R0=0.5m.直軌道的右端處于豎直向下、磁感應強度B=0.64T的勻強磁場中,磁場區(qū)域的寬度d=0.80m,且其右邊界與NN′重合.現(xiàn)有一質量m=0.20kg、電阻r=0.10Ω的導體桿ab靜止在距磁場的左邊界s=2.0m處.在與桿垂直的水平恒力F=2.0N的作用下ab桿開始運動,當運動至磁場的左邊界時撤去F,結果導體桿ab通過半圓形軌道的最高點PP′后落到距NN′為S’=1.0m處.已知導體桿ab在運動過程中與軌道接觸良好,且始終與軌道垂直,導體桿ab與直軌道之間的動摩擦因數(shù)μ=0.10,軌道的電阻可忽略不計,取g=10m/s2,求:
(1)導體桿剛進入磁場時,通過導體桿上的電流大小和方向;
(2)導體桿穿過磁場的過程中整個電路產(chǎn)生的焦耳熱.

分析 (1)先有動能定理求出進入磁場時的速度,導體棒進入磁場時金屬桿切割磁感線,產(chǎn)生感應電流.由法拉第定律和歐姆定律可求得感應電流大。
(2)桿ab離開軌道后做平拋運動,根據(jù)平拋運動的規(guī)律可求得桿通過PP′時的速度.回路中機械能轉化為內(nèi)能,根據(jù)能量守恒定律求出電路中產(chǎn)生的焦耳熱.

解答 解:(1)設導體桿在 F 的作用下運動到磁場的左邊界時的速度為v1,根據(jù)動能定理則有:
 (F-μmg)s=$\frac{1}{2}$mv12   
得:v1=$\sqrt{\frac{2(F-μmg)s}{m}}$=$\sqrt{\frac{2×(2-0.1×0.2×10)×2}{0.2}}$m/s=6m/s
導體桿剛進入磁場時產(chǎn)生的感應電動勢為:
  E=Blv1=0.64×0.5×6V=1.92V
此時通過導體桿的電流大小為:I=$\frac{E}{R+r}$=$\frac{1.92}{0.4+0.1}$A=3.84A
根據(jù)右手定則可知,電流方向為b向a.
(2)設導體桿離開磁場時的速度大小為v2,運動到圓軌道最高點的速度為v3
桿ab離開軌道后做平拋運動,則有
  s′=v3t
  2R0=$\frac{1}{2}g{t}^{2}$
解得 v3=$\sqrt{5}$m/s  
對于導體桿從NN′運動至 PP′的過程,根據(jù)機械能守恒定律有:$\frac{1}{2}$mv22=$\frac{1}{2}$mv32+mg•2R0 
解得:v2=$\sqrt{5g{R}_{0}}$=5.0m/s                          
導體桿穿過磁場的過程中損失的機械能為:△E=$\frac{1}{2}$mv12-$\frac{1}{2}$mv22=$\frac{1}{2}$×0.2×(62-52)J=1.1J 
此過程中電路中產(chǎn)生的焦耳熱為:
 Q=△E-μmgd=1.1J-0.1×0.2×10×0.8J=0.94J 
答:
(1)導體桿剛進入磁場時,通過導體桿上的電流大小為3.84A,電流方向為b向a;
(2)導體桿穿過磁場的過程中整個電路產(chǎn)生的焦耳熱為0.94J.

點評 本題是電磁感應中的力學問題,綜合了電磁感應、電路、力學等知識.關鍵運用力學的規(guī)律進行分析和解答.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:選擇題

8.關于速度,下面的說法是錯誤的是( 。
A.相同時間內(nèi)通過路程長的物體平均速度大
B.通過相同的位移,所用時間短的物體速度大
C.單位時間內(nèi)通過位移大的物體速度大
D.位置變化快的物體速度大

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

9.如圖所示,傾角為30°、足夠長的光滑平行金屬導軌MN、PQ相距L1=0.4m,B2=5T的勻強磁場垂直導軌平面向上.一質量m=1.6kg的金屬棒ab垂直于MN、PQ放置在導軌上,且始終與導軌接觸良好,其電阻r=1Ω.金屬導軌上端連接右側電路,R1=1Ω,R2=1.5Ω,R2兩端通過細導線連接質量M=0.6kg的正方形金屬框cdef,正方形L2=0.2m,每條邊電阻r0為1Ω,金屬框處在一方向垂直紙面向里,B2=3T的勻強磁場中,現(xiàn)將金屬棒由靜止釋放,不計其他電阻及滑輪摩擦,g取10m/s2

(1)若將電健S斷開,求棒下滑過程中的最大速度.
(2)若電鍵S閉合,每根細導線能承受的最大拉力為3.6N,求細導線剛好被拉斷時棒的速度.
(3)若電鍵閉合后,從棒釋放到細導線被拉斷的過程中,棒上產(chǎn)生的電熱為2J,求此過程中棒下滑的高度(結果保留一位有效數(shù)字).

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

6.如圖所示,傾角為45°、高為h的直角三角形斜面ABC固定在水平地面上,C點固定一個帶電量為Q(Q>0)的點電荷,AB為粗糙絕緣斜面.一個帶電量為 q(q>0)、質量為m的小物塊(可視為質點)由A點釋放,小物塊與AB斜面間的動摩擦因數(shù)為μ,設小物塊始終沒有脫離斜面一直能運動到B點且小物塊的電量不變.靜電力常量為k,重力加速度為g.
求:當小球對斜面的壓力最小時,小球的加速度的大。

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

13.一段導體兩端的電壓是4V,在2min內(nèi)通過它的電量是15C,那么這段導體的電阻是( 。
A.32ΩB.30ΩC.16ΩD.15Ω

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

3.下列說法中正確的是( 。
A.狹義相對論認為:不論光源與觀察者做怎樣的相對運動,光速都是一樣的
B.偏振是波特有的現(xiàn)象,聲波和光都能發(fā)生偏振
C.根據(jù)麥克斯韋的電磁場理論可知,變化的電場周圍一定可以產(chǎn)生變化的磁場
D.在“探究單擺周期與擺長的關系”的實驗中,測量單擺周期應該從小球經(jīng)過最大位移處開始計時,以減小實驗誤差

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

10.如圖所示,水平放置的平行金屬板A、B連接一恒定電壓,兩個質量相等的電荷M和N同時分別從極板A的邊緣和兩極板的正中間沿水平方向進入板間電場,兩電荷恰好在板間某點相遇.若不考慮電荷的重力和它們之間的相互作用,則下列說法正確的是( 。
A.電荷M的比荷等于電荷N的比荷
B.兩電荷在電場中運動的加速度相等
C.電荷M進入電場的初速度大小與電荷N進入電場的初速度大小一定相同
D.從兩電荷進入電場到兩電荷相遇,電場力對電荷M做的功大于電場力對電荷N做的功

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

7.用已調零且選擇旋鈕指向歐姆擋“×100”位置的多用電表測某電阻阻值,根據(jù)如左圖所示的表盤,被測電阻阻值為2200Ω.若將該表選擇旋鈕置于直流10mA擋測電流,表盤仍如圖所示,則被測電流為4.0 mA.

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

1.為了測量小滑塊與水平桌面間的動摩擦因數(shù),某學習小組設計了如圖乙的實驗裝置,其中擋板可固定在桌面上,輕彈簧左端與擋板相連,桌面高為h,O1、O2、A、B、C點在同一水平直線上.已知重力加速度為g,空氣阻力可忽略不計.
實驗過程一:如圖甲所示,擋板固定在O1點,推動滑塊壓縮彈簧,滑塊移到A處,測量O1A的距離,滑塊由靜止釋放,落在水平地面上的P點,測出P點到桌面右端的水平距離為x1;
實驗過程二:將擋板的固定點移到距O1點距離為d的O2點,如圖乙所示,推動滑塊壓縮彈簧,滑塊移到C處,使O2C的距離與O1A的距離相等.滑塊由靜止釋放,落在水平地面上的Q點,測出Q點到桌面右端的水平距離x2

(1)為完成本實驗,下列說法中正確的是C.
A.必須測出小滑塊的質量         B.必須測出彈簧的勁度系數(shù)
C.彈簧的壓縮量不能太小         D.必須測出彈簧的原長
(2)寫出動摩擦因數(shù)的表達式μ=$\frac{x_1^2-x_2^2}{4dh}$(用題中所給物理量的符號表示).
(3)某同學認為,不測量桌面高度,改用秒表測出小滑塊從飛離桌面到落地的時間,也可測出小滑塊與水平桌面間的動摩擦因數(shù).此實驗方案不可行(選填“可行”或“不可行”),理由是滑塊在空中飛行時間很短,難以把握計時起點和終點,秒表測時間誤差較大.

查看答案和解析>>

同步練習冊答案