高考復(fù)習(xí)科目:數(shù)學(xué) 高中數(shù)學(xué)總復(fù)習(xí)(十一)
復(fù)習(xí)內(nèi)容:高中數(shù)學(xué)第十一章-概率 第十二章-概率與統(tǒng)計(jì)
復(fù)習(xí)范圍:第十一章、第十二章
編寫時(shí)間:2005-5
修訂時(shí)間:總計(jì)第三次 2005-6
一、概率.
1. 概率:隨機(jī)事件A的概率是頻率的穩(wěn)定值,反之,頻率是概率的近似值.
2. 等可能事件的概率:如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有年n個(gè),且所有結(jié)果出現(xiàn)的可能性都相等,那么,每一個(gè)基本事件的概率都是,如果某個(gè)事件A包含的結(jié)果有m個(gè),那么事件A的概率.
3. ①互斥事件:不可能同時(shí)發(fā)生的兩個(gè)事件叫互斥事件. 如果事件A、B互斥,那么事件A+B發(fā)生(即A、B中有一個(gè)發(fā)生)的概率,等于事件A、B分別發(fā)生的概率和,即P(A+B)=P(A)+P(B),推廣:.
②對(duì)立事件:兩個(gè)事件必有一個(gè)發(fā)生的互斥事件叫對(duì)立事件. 例如:從1~52張撲克牌中任取一張抽到“紅桃”與抽到“黑桃”互為互斥事件,因?yàn)槠渲幸粋(gè)不可能同時(shí)發(fā)生,但又不能保證其中一個(gè)必然發(fā)生,故不是對(duì)立事件.而抽到“紅色牌”與抽到黑色牌“互為對(duì)立事件,因?yàn)槠渲幸粋(gè)必發(fā)生.
注意:i.對(duì)立事件的概率和等于1:.
ii.互為對(duì)立的兩個(gè)事件一定互斥,但互斥不一定是對(duì)立事件.
③相互獨(dú)立事件:事件A(或B)是否發(fā)生對(duì)事件B(或A)發(fā)生的概率沒(méi)有影響.這樣的兩個(gè)事件叫做相互獨(dú)立事件. 如果兩個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,等于每個(gè)事件發(fā)生的概率的積,即P(A?B)=P(A)?P(B). 由此,當(dāng)兩個(gè)事件同時(shí)發(fā)生的概率P(AB)等于這兩個(gè)事件發(fā)生概率之和,這時(shí)我們也可稱這兩個(gè)事件為獨(dú)立事件.例如:從一副撲克牌(52張)中任抽一張?jiān)O(shè)A:“抽到老K”;B:“抽到紅牌”則 A應(yīng)與B互為獨(dú)立事件[看上去A與B有關(guān)系很有可能不是獨(dú)立事件,但.又事件AB表示“既抽到老K對(duì)抽到紅牌”即“抽到紅桃老K或方塊老K”有,因此有.
推廣:若事件相互獨(dú)立,則.
注意:i. 一般地,如果事件A與B相互獨(dú)立,那么A 與與B,與也都相互獨(dú)立.
ii. 必然事件與任何事件都是相互獨(dú)立的.
iii. 獨(dú)立事件是對(duì)任意多個(gè)事件來(lái)講,而互斥事件是對(duì)同一實(shí)驗(yàn)來(lái)講的多個(gè)事件,且這多個(gè)事件不能同時(shí)發(fā)生,故這些事件相互之間必然影響,因此互斥事件一定不是獨(dú)立事件.
④獨(dú)立重復(fù)試驗(yàn):若n次重復(fù)試驗(yàn)中,每次試驗(yàn)結(jié)果的概率都不依賴于其他各次試驗(yàn)的結(jié)果,則稱這n次試驗(yàn)是獨(dú)立的. 如果在一次試驗(yàn)中某事件發(fā)生的概率為P,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生k次的概率:.
4. 對(duì)任何兩個(gè)事件都有
二、隨機(jī)變量.
1. 隨機(jī)試驗(yàn)的結(jié)構(gòu)應(yīng)該是不確定的.試驗(yàn)如果滿足下述條件:
①試驗(yàn)可以在相同的情形下重復(fù)進(jìn)行;②試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);③每次試驗(yàn)總是恰好出現(xiàn)這些結(jié)果中的一個(gè),但在一次試驗(yàn)之前卻不能肯定這次試驗(yàn)會(huì)出現(xiàn)哪一個(gè)結(jié)果.
它就被稱為一個(gè)隨機(jī)試驗(yàn).
2. 離散型隨機(jī)變量:如果對(duì)于隨機(jī)變量可能取的值,可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.若ξ是一個(gè)隨機(jī)變量,a,b是常數(shù).則也是一個(gè)隨機(jī)變量.一般地,若ξ是隨機(jī)變量,是連續(xù)函數(shù)或單調(diào)函數(shù),則也是隨機(jī)變量.也就是說(shuō),隨機(jī)變量的某些函數(shù)也是隨機(jī)變量.
設(shè)離散型隨機(jī)變量ξ可能取的值為:
ξ取每一個(gè)值的概率,則表稱為隨機(jī)變量ξ的概率分布,簡(jiǎn)稱ξ的分布列.
…
…
P
…
…
有性質(zhì)①; ②.
注意:若隨機(jī)變量可以取某一區(qū)間內(nèi)的一切值,這樣的變量叫做連續(xù)型隨機(jī)變量.例如:即可以取0~5之間的一切數(shù),包括整數(shù)、小數(shù)、無(wú)理數(shù).
3. ⑴二項(xiàng)分布:如果在一次試驗(yàn)中某事件發(fā)生的概率是P,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生k次的概率是:[其中]
于是得到隨機(jī)變量ξ的概率分布如下:我們稱這樣的隨機(jī)變量ξ服從二項(xiàng)分布,記作~B(n?p),其中n,p為參數(shù),并記.
⑵二項(xiàng)分布的判斷與應(yīng)用.
①二項(xiàng)分布,實(shí)際是對(duì)n次獨(dú)立重復(fù)試驗(yàn).關(guān)鍵是看某一事件是否是進(jìn)行n次獨(dú)立重復(fù),且每次試驗(yàn)只有兩種結(jié)果,如果不滿足此兩條件,隨機(jī)變量就不服從二項(xiàng)分布.
②當(dāng)隨機(jī)變量的總體很大且抽取的樣本容量相對(duì)于總體來(lái)說(shuō)又比較小,而每次抽取時(shí)又只有兩種試驗(yàn)結(jié)果,此時(shí)可以把它看作獨(dú)立重復(fù)試驗(yàn),利用二項(xiàng)分布求其分布列.
4. 幾何分布:“”表示在第k次獨(dú)立重復(fù)試驗(yàn)時(shí),事件第一次發(fā)生,如果把k次試驗(yàn)時(shí)事件A發(fā)生記為,事A不發(fā)生記為,那么.根據(jù)相互獨(dú)立事件的概率乘法分式:于是得到隨機(jī)變量ξ的概率分布列.
1
2
3
…
k
…
P
q
qp
…
…
我們稱ξ服從幾何分布,并記,其中
5. ⑴超幾何分布:一批產(chǎn)品共有N件,其中有M(M<N)件次品,今抽取件,則其中的次品數(shù)ξ是一離散型隨機(jī)變量,分布列為.〔分子是從M件次品中取k件,從N-M件正品中取n-k件的取法數(shù),如果規(guī)定<時(shí),則k的范圍可以寫為k=0,1,…,n.〕
⑵超幾何分布的另一種形式:一批產(chǎn)品由 a件次品、b件正品組成,今抽取n件(1≤n≤a+b),則次品數(shù)ξ的分布列為.
⑶超幾何分布與二項(xiàng)分布的關(guān)系.
設(shè)一批產(chǎn)品由a件次品、b件正品組成,不放回抽取n件時(shí),其中次品數(shù)ξ服從超幾何分布.若放回式抽取,則其中次品數(shù)的分布列可如下求得:把個(gè)產(chǎn)品編號(hào),則抽取n次共有個(gè)可能結(jié)果,等可能:含個(gè)結(jié)果,故,即~.[我們先為k個(gè)次品選定位置,共種選法;然后每個(gè)次品位置有a種選法,每個(gè)正品位置有b種選法] 可以證明:當(dāng)產(chǎn)品總數(shù)很大而抽取個(gè)數(shù)不多時(shí),,因此二項(xiàng)分布可作為超幾何分布的近似,無(wú)放回抽樣可近似看作放回抽樣.
三、數(shù)學(xué)期望與方差.
1. 期望的含義:一般地,若離散型隨機(jī)變量ξ的概率分布為
…
…
P
…
…
則稱為ξ的數(shù)學(xué)期望或平均數(shù)、均值.數(shù)學(xué)期望又簡(jiǎn)稱期望.數(shù)學(xué)期望反映了離散型隨機(jī)變量取值的平均水平.
2. ⑴隨機(jī)變量的數(shù)學(xué)期望:
①當(dāng)時(shí),,即常數(shù)的數(shù)學(xué)期望就是這個(gè)常數(shù)本身.
②當(dāng)時(shí),,即隨機(jī)變量ξ與常數(shù)之和的期望等于ξ的期望與這個(gè)常數(shù)的和.
③當(dāng)時(shí),,即常數(shù)與隨機(jī)變量乘積的期望等于這個(gè)常數(shù)與隨機(jī)變量期望的乘積.
ξ
0
1
P
q
p
⑵單點(diǎn)分布:其分布列為:.
⑶兩點(diǎn)分布:,其分布列為:(p + q = 1)
⑷二項(xiàng)分布: 其分布列為~.(P為發(fā)生的概率)
⑸幾何分布: 其分布列為~.(P為發(fā)生的概率)
3.方差、標(biāo)準(zhǔn)差的定義:當(dāng)已知隨機(jī)變量ξ的分布列為時(shí),則稱為ξ的方差. 顯然,故為ξ的根方差或標(biāo)準(zhǔn)差.隨機(jī)變量ξ的方差與標(biāo)準(zhǔn)差都反映了隨機(jī)變量ξ取值的穩(wěn)定與波動(dòng),集中與離散的程度.越小,穩(wěn)定性越高,波動(dòng)越小.
4.方差的性質(zhì).
⑴隨機(jī)變量的方差.(a、b均為常數(shù))
ξ
0
1
P
q
p
⑵單點(diǎn)分布: 其分布列為
⑶兩點(diǎn)分布: 其分布列為:(p + q = 1)
⑷二項(xiàng)分布:
⑸幾何分布:
5. 期望與方差的關(guān)系.
⑴如果和都存在,則
⑵設(shè)ξ和是互相獨(dú)立的兩個(gè)隨機(jī)變量,則
⑶期望與方差的轉(zhuǎn)化: ⑷(因?yàn)?sub>為一常數(shù)).
四、正態(tài)分布.(基本不列入考試范圍)
1.密度曲線與密度函數(shù):對(duì)于連續(xù)型隨機(jī)變量ξ,位于x軸上方,ξ落在任一區(qū)間內(nèi)的概率等于它與x軸.直線與直線所圍成的曲邊梯形的面積
(如圖陰影部分)的曲線叫ξ的密度曲線,以其作為
圖像的函數(shù)叫做ξ的密度函數(shù),由于“”
是必然事件,故密度曲線與x軸所夾部分面積等于1.
2. ⑴正態(tài)分布與正態(tài)曲線:如果隨機(jī)變量ξ的概率密度為:. (為常數(shù),且),稱ξ服從參數(shù)為的正態(tài)分布,用~表示.的表達(dá)式可簡(jiǎn)記為,它的密度曲線簡(jiǎn)稱為正態(tài)曲線.
⑵正態(tài)分布的期望與方差:若~,則ξ的期望與方差分別為:.
⑶正態(tài)曲線的性質(zhì).
①曲線在x軸上方,與x軸不相交.
②曲線關(guān)于直線對(duì)稱.
③當(dāng)時(shí)曲線處于最高點(diǎn),當(dāng)x向左、向右遠(yuǎn)離時(shí),曲線不斷地降低,呈現(xiàn)出“中間高、兩邊低”的鐘形曲線.
④當(dāng)<時(shí),曲線上升;當(dāng)>時(shí),曲線下降,并且當(dāng)曲線向左、向右兩邊無(wú)限延伸時(shí),以x軸為漸近線,向x軸無(wú)限的靠近.
⑤當(dāng)一定時(shí),曲線的形狀由確定,越大,曲線越“矮胖”.表示總體的分布越分散;越小,曲線越“瘦高”,表示總體的分布越集中.
3. ⑴標(biāo)準(zhǔn)正態(tài)分布:如果隨機(jī)變量ξ的概率函數(shù)為,則稱ξ服從標(biāo)準(zhǔn)正態(tài)分布. 即~有,求出,而P(a<≤b)的計(jì)算則是.
注意:當(dāng)標(biāo)準(zhǔn)正態(tài)分布的的X取0時(shí),有當(dāng)的X取大于0的數(shù)時(shí),有.比如則必然小于0,如圖.
⑵正態(tài)分布與標(biāo)準(zhǔn)正態(tài)分布間的關(guān)系:若~則ξ的分布函數(shù)通
常用表示,且有.
4.⑴“
假設(shè)檢驗(yàn)是就正態(tài)總體而言的,進(jìn)行假設(shè)檢驗(yàn)可歸結(jié)為如下三步:①提出統(tǒng)計(jì)假設(shè),統(tǒng)計(jì)假設(shè)里的變量服從正態(tài)分布.②確定一次試驗(yàn)中的取值是否落入范圍.③做出判斷:如果,接受統(tǒng)計(jì)假設(shè). 如果,由于這是小概率事件,就拒絕統(tǒng)計(jì)假設(shè).
⑵“3”原則的應(yīng)用:若隨機(jī)變量ξ服從正態(tài)分布則 ξ落在內(nèi)的概率為99.7% 亦即落在之外的概率為0.3%,此為小概率事件,如果此事件發(fā)生了,就說(shuō)明此種產(chǎn)品不合格(即ξ不服從正態(tài)分布).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com