2009年高考數(shù)學(xué)難點(diǎn)突破專題輔導(dǎo)十二

難點(diǎn)12  等差數(shù)列、等比數(shù)列的性質(zhì)運(yùn)用

等差、等比數(shù)列的性質(zhì)是等差、等比數(shù)列的概念,通項(xiàng)公式,前n項(xiàng)和公式的引申.應(yīng)用等差等比數(shù)列的性質(zhì)解題,往往可以回避求其首項(xiàng)和公差或公比,使問題得到整體地解決,能夠在運(yùn)算時(shí)達(dá)到運(yùn)算靈活,方便快捷的目的,故一直受到重視.高考中也一直重點(diǎn)考查這部分內(nèi)容.

●難點(diǎn)磁場(chǎng)

(★★★★★)等差數(shù)列{an}的前n項(xiàng)的和為30,前2m項(xiàng)的和為100,求它的前3m項(xiàng)的和為_________.

●案例探究

[例1]已知函數(shù)f(x)=6ec8aac122bd4f6e (x<-2).

(1)求f(x)的反函數(shù)f-1(x);

(2)設(shè)a1=1,6ec8aac122bd4f6e =-f-1(an)(nN*),求an;

(3)設(shè)Sn=a12+a22+…+an2,bn=Sn+1Sn是否存在最小正整數(shù)m,使得對(duì)任意nN*,有bn<6ec8aac122bd4f6e成立?若存在,求出m的值;若不存在,說明理由.

命題意圖:本題是一道與函數(shù)、數(shù)列有關(guān)的綜合性題目,著重考查學(xué)生的邏輯分析能力,屬★★★★★級(jí)題目.

知識(shí)依托:本題融合了反函數(shù),數(shù)列遞推公式,等差數(shù)列基本問題、數(shù)列的和、函數(shù)單調(diào)性等知識(shí)于一爐,結(jié)構(gòu)巧妙,形式新穎,是一道精致的綜合題.

錯(cuò)解分析:本題首問考查反函數(shù),反函數(shù)的定義域是原函數(shù)的值域,這是一個(gè)易錯(cuò)點(diǎn),(2)問以數(shù)列{6ec8aac122bd4f6e}為橋梁求an,不易突破.

技巧與方法:(2)問由式子6ec8aac122bd4f6e6ec8aac122bd4f6e=4,構(gòu)造等差數(shù)列{6ec8aac122bd4f6e},從而求得an,即“借雞生蛋”是求數(shù)列通項(xiàng)的常用技巧;(3)問運(yùn)用了函數(shù)的思想.

解:(1)設(shè)y=6ec8aac122bd4f6e,∵x<-2,∴x=-6ec8aac122bd4f6e,

y=f-1(x)=-6ec8aac122bd4f6e (x>0)

(2)∵6ec8aac122bd4f6e

∴{6ec8aac122bd4f6e}是公差為4的等差數(shù)列,

a1=1, 6ec8aac122bd4f6e=6ec8aac122bd4f6e+4(n-1)=4n-3,∵an>0,∴an=6ec8aac122bd4f6e.

(3)bn=Sn+1Sn=an+12=6ec8aac122bd4f6e,由bn<6ec8aac122bd4f6e,得m>6ec8aac122bd4f6e,

設(shè)g(n)= 6ec8aac122bd4f6e,∵g(n)= 6ec8aac122bd4f6enN*上是減函數(shù),

g(n)的最大值是g(1)=5,∴m>5,存在最小正整數(shù)m=6,使對(duì)任意nN*bn<6ec8aac122bd4f6e成立.

[例2]設(shè)等比數(shù)列{an}的各項(xiàng)均為正數(shù),項(xiàng)數(shù)是偶數(shù),它的所有項(xiàng)的和等于偶數(shù)項(xiàng)和的4倍,且第二項(xiàng)與第四項(xiàng)的積是第3項(xiàng)與第4項(xiàng)和的9倍,問數(shù)列{lgan}的前多少項(xiàng)和最大?(lg2=0.3,lg3=0.4)

命題意圖:本題主要考查等比數(shù)列的基本性質(zhì)與對(duì)數(shù)運(yùn)算法則,等差數(shù)列與等比數(shù)列之間的聯(lián)系以及運(yùn)算、分析能力.屬★★★★★級(jí)題目.

知識(shí)依托:本題須利用等比數(shù)列通項(xiàng)公式、前n項(xiàng)和公式合理轉(zhuǎn)化條件,求出an;進(jìn)而利用對(duì)數(shù)的運(yùn)算性質(zhì)明確數(shù)列{lgan}為等差數(shù)列,分析該數(shù)列項(xiàng)的分布規(guī)律從而得解.

錯(cuò)解分析:題設(shè)條件中既有和的關(guān)系,又有項(xiàng)的關(guān)系,條件的正確轉(zhuǎn)化是關(guān)鍵,計(jì)算易出錯(cuò);而對(duì)數(shù)的運(yùn)算性質(zhì)也是易混淆的地方.

技巧與方法:突破本題的關(guān)鍵在于明確等比數(shù)列各項(xiàng)的對(duì)數(shù)構(gòu)成等差數(shù)列,而等差數(shù)列中前n項(xiàng)和有最大值,一定是該數(shù)列中前面是正數(shù),后面是負(fù)數(shù),當(dāng)然各正數(shù)之和最大;另外,等差數(shù)列Snn的二次函數(shù),也可由函數(shù)解析式求最值.

解法一:設(shè)公比為q,項(xiàng)數(shù)為2m,mN*,依題意有

6ec8aac122bd4f6e

化簡(jiǎn)得6ec8aac122bd4f6e.

設(shè)數(shù)列{lgan}前n項(xiàng)和為Sn,則

Sn=lga1+lga1q2+…+lga1qn1=lga1n?q1+2++(n1)

=nlga1+6ec8aac122bd4f6en(n-1)?lgq=n(2lg2+lg3)-6ec8aac122bd4f6en(n-1)lg3

=(-6ec8aac122bd4f6e)?n2+(2lg2+6ec8aac122bd4f6elg3)?n

可見,當(dāng)n=6ec8aac122bd4f6e時(shí),Sn最大.

6ec8aac122bd4f6e=5,故{lgan}的前5項(xiàng)和最大.

解法二:接前,6ec8aac122bd4f6e,于是lgan=lg[108(6ec8aac122bd4f6e)n1]=lg108+(n-1)lg6ec8aac122bd4f6e,

∴數(shù)列{lgan}是以lg108為首項(xiàng),以lg6ec8aac122bd4f6e為公差的等差數(shù)列,令lgan≥0,得2lg2-(n-4)lg3≥0,∴n6ec8aac122bd4f6e=5.5.

由于nN*,可見數(shù)列{lgan}的前5項(xiàng)和最大.

●錦囊妙計(jì)

1.等差、等比數(shù)列的性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題的既快捷又方便的工具,應(yīng)有意識(shí)去應(yīng)用.

2.在應(yīng)用性質(zhì)時(shí)要注意性質(zhì)的前提條件,有時(shí)需要進(jìn)行適當(dāng)變形.

3.“巧用性質(zhì)、減少運(yùn)算量”在等差、等比數(shù)列的計(jì)算中非常重要,但用“基本量法”并樹立“目標(biāo)意識(shí)”,“需要什么,就求什么”,既要充分合理地運(yùn)用條件,又要時(shí)刻注意題的目標(biāo),往往能取得與“巧用性質(zhì)”解題相同的效果.

●殲滅難點(diǎn)訓(xùn)練

一、選擇題

1.(★★★★)等比數(shù)列{an}的首項(xiàng)a1=-1,前n項(xiàng)和為Sn,若6ec8aac122bd4f6e,則6ec8aac122bd4f6eSn等于(    )

試題詳情

6ec8aac122bd4f6e                       C.2                                   D.-2

試題詳情

二、填空題

2.(★★★★)已知a,b,a+b成等差數(shù)列,a,b,ab成等比數(shù)列,且0<logm(ab)<1,則m的取值范圍是_________.

試題詳情

3.(★★★★)等差數(shù)列{an}共有2n+1項(xiàng),其中奇數(shù)項(xiàng)之和為319,偶數(shù)項(xiàng)之和為290,則其中間項(xiàng)為_________.

試題詳情

4.(★★★★)已知ab、c成等比數(shù)列,如果a、x、bby、c都成等差數(shù)列,則6ec8aac122bd4f6e=_________.

試題詳情

三、解答題

5.(★★★★★)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S12>0,S13<0.

(1)求公差d的取值范圍;

(2)指出S1、S2、…、S12中哪一個(gè)值最大,并說明理由.

試題詳情

6.(★★★★★)已知數(shù)列{an}為等差數(shù)列,公差d≠0,由{an}中的部分項(xiàng)組成的數(shù)列

試題詳情

a6ec8aac122bd4f6e,a6ec8aac122bd4f6e,…,a6ec8aac122bd4f6e,…為等比數(shù)列,其中b1=1,b2=5,b3=17.

(1)求數(shù)列{bn}的通項(xiàng)公式;

試題詳情

(2)記Tn=C6ec8aac122bd4f6eb1+C6ec8aac122bd4f6eb2+C6ec8aac122bd4f6eb3+…+C6ec8aac122bd4f6ebn,求6ec8aac122bd4f6e.

試題詳情

7.(★★★★)設(shè){an}為等差數(shù)列,{bn}為等比數(shù)列,a1=b1=1,a2+a4=b3,b2?b4=a3,分別求出{an}及{bn}的前n項(xiàng)和S10T10.

試題詳情

8.(★★★★★){an}為等差數(shù)列,公差d≠0,an≠0,(nN*),且akx2+2ak+1x+ak+2=0(kN*)

(1)求證:當(dāng)k取不同自然數(shù)時(shí),此方程有公共根;

試題詳情

(2)若方程不同的根依次為x1,x2,…,xn,…,求證:數(shù)列6ec8aac122bd4f6e為等差數(shù)列.

試題詳情

       難點(diǎn)磁場(chǎng)

6ec8aac122bd4f6e解法一:將Sm=30,S2m=100代入Sn=na1+6ec8aac122bd4f6ed,得:

6ec8aac122bd4f6e                                               

6ec8aac122bd4f6e

解法二:由6ec8aac122bd4f6e知,要求S3m只需求ma1+6ec8aac122bd4f6e],將②-①得ma1+ 6ec8aac122bd4f6ed=70,∴S3m=210.

解法三:由等差數(shù)列{an}的前n項(xiàng)和公式知,Sn是關(guān)于n的二次函數(shù),即Sn=An2+Bn(A、B是常數(shù)).將Sm=30,S2m=100代入,得

6ec8aac122bd4f6e,∴S3m=A?(3m)2+B?3m=210

解法四:S3m=S2m+a2m+1+a2m+2+…+a3m=S2m+(a1+2md)+…+(am+2md)=S2m+(a1+…+am)+m?2md=S2m+Sm+2m2d.

由解法一知d=6ec8aac122bd4f6e,代入得S3m=210.

解法五:根據(jù)等差數(shù)列性質(zhì)知:Sm,S2mSm,S3mS2m也成等差數(shù)列,從而有:2(S2mSm)=Sm+(S3mS2m)

S3m=3(S2mSm)=210

解法六:∵Sn=na1+6ec8aac122bd4f6ed,

6ec8aac122bd4f6e=a1+6ec8aac122bd4f6ed

∴點(diǎn)(n, 6ec8aac122bd4f6e)是直線y=6ec8aac122bd4f6e+a1上的一串點(diǎn),由三點(diǎn)(m,6ec8aac122bd4f6e),(2m, 6ec8aac122bd4f6e),(3m, 6ec8aac122bd4f6e)共線,易得S3m=3(S2mSm)=210.

解法七:令m=1得S1=30,S2=100,得a1=30,a1+a2=100,∴a1=30,a2=70

a3=70+(70-30)=110

S3=a1+a2+a3=210

答案:210

殲滅難點(diǎn)訓(xùn)練

一、1.解析:利用等比數(shù)列和的性質(zhì).依題意,6ec8aac122bd4f6e,而a1=-1,故q≠1,

6ec8aac122bd4f6e,根據(jù)等比數(shù)列性質(zhì)知S5S10S5,S15S10,…,也成等比數(shù)列,且它的公比為q5,∴q5=-6ec8aac122bd4f6e,即q=-6ec8aac122bd4f6e.

6ec8aac122bd4f6e

答案:B

二、2.解析:解出ab,解對(duì)數(shù)不等式即可.

答案:(-∞,8)

3.解析:利用S/S=6ec8aac122bd4f6e得解.

答案:第11項(xiàng)a11=29

4.解法一:賦值法.

解法二:

b=aq,c=aq2,x=6ec8aac122bd4f6e(a+b)=6ec8aac122bd4f6ea(1+q),y=6ec8aac122bd4f6e(b+c)=6ec8aac122bd4f6eaq(1+q),

6ec8aac122bd4f6e =6ec8aac122bd4f6e=2.

答案:2

三、5.(1)解:依題意有:6ec8aac122bd4f6e

解之得公差d的取值范圍為-6ec8aac122bd4f6ed<-3.

(2)解法一:由d<0可知a1>a2>a3>…>a12>a13,因此,在S1S2,…,S12Sk為最大值的條件為:ak≥0且ak+1<0,即6ec8aac122bd4f6e

a3=12,∴6ec8aac122bd4f6e,∵d<0,∴2-6ec8aac122bd4f6ek≤3-6ec8aac122bd4f6e

∵-6ec8aac122bd4f6ed<-3,∴6ec8aac122bd4f6e<-6ec8aac122bd4f6e<4,得5.5<k<7.

因?yàn)?i>k是正整數(shù),所以k=6,即在S1,S2,…,S12中,S6最大.

解法二:由d<0得a1>a2>…>a12>a13,因此,若在1≤k≤12中有自然數(shù)k,使得ak≥0,且ak+1<0,則SkS1,S2,…,S12中的最大值.由等差數(shù)列性質(zhì)得,當(dāng)mn、p、qN*,且m+n=p+q時(shí),am+an=ap+aq.所以有:2a7=a1+a13=6ec8aac122bd4f6eS13<0,∴a7<0,a7+a6=a1+a12=6ec8aac122bd4f6eS12>0,∴a6≥-a7>0,故在S1,S2,…,S12S6最大.

解法三:依題意得:6ec8aac122bd4f6e

6ec8aac122bd4f6e最小時(shí),Sn最大;

∵-6ec8aac122bd4f6ed<-3,∴6<6ec8aac122bd4f6e(5-6ec8aac122bd4f6e)<6.5.從而,在正整數(shù)中,當(dāng)n=6時(shí),[n6ec8aac122bd4f6e (5-6ec8aac122bd4f6e)]2最小,所以S6最大.

點(diǎn)評(píng):該題的第(1)問通過建立不等式組求解屬基本要求,難度不高,入手容易.第(2)問難度較高,為求{Sn}中的最大值Sk,1≤k≤12,思路之一是知道Sk為最大值的充要條件是ak≥0且ak+1<0,思路之三是可視Snn的二次函數(shù),借助配方法可求解.它考查了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想、邏輯思維能力和計(jì)算能力,較好地體現(xiàn)了高考試題注重能力考查的特點(diǎn).而思路之二則是通過等差數(shù)列的性質(zhì)等和性探尋數(shù)列的分布規(guī)律,找出“分水嶺”,從而得解.

6.解:(1)由題意知a52=a1?a17,即(a1+4d)2=a1(a1+16d)6ec8aac122bd4f6ea1d=2d2,

d≠0,∴a1=2d,數(shù)列{6ec8aac122bd4f6e}的公比q=6ec8aac122bd4f6e=3,

6ec8aac122bd4f6e=a1?3n1                                                                                         ①

6ec8aac122bd4f6e=a1+(bn-1)d=6ec8aac122bd4f6e                                                                     ②

由①②得a1?3n1=6ec8aac122bd4f6e?a1.∵a1=2d≠0,∴bn=2?3n1-1.

(2)Tn=C6ec8aac122bd4f6eb1+C6ec8aac122bd4f6eb2+…+C6ec8aac122bd4f6ebn=C6ec8aac122bd4f6e (2?30-1)+C6ec8aac122bd4f6e?(2?31-1)+…+C6ec8aac122bd4f6e(2?3n1-1)=6ec8aac122bd4f6e(C6ec8aac122bd4f6e+C6ec8aac122bd4f6e?32+…+C6ec8aac122bd4f6e?3n)-(C6ec8aac122bd4f6e+C6ec8aac122bd4f6e+…+C6ec8aac122bd4f6e)=6ec8aac122bd4f6e[(1+3)n-1]-(2n-1)= 6ec8aac122bd4f6e?4n-2n+6ec8aac122bd4f6e,

6ec8aac122bd4f6e

7.解:∵{an}為等差數(shù)列,{bn}為等比數(shù)列,∴a2+a4=2a3,b2?b4=b32,

已知a2+a4=b3,b2?b4=a3,∴b3=2a3,a3=b32,

b3=2b32,∵b3≠0,∴b3=6ec8aac122bd4f6e,a3=6ec8aac122bd4f6e.

a1=1,a3=6ec8aac122bd4f6e,知{an}的公差d=-6ec8aac122bd4f6e,

S10=10a1+6ec8aac122bd4f6ed=-6ec8aac122bd4f6e.

b1=1,b3=6ec8aac122bd4f6e,知{bn}的公比q=6ec8aac122bd4f6eq=-6ec8aac122bd4f6e,

6ec8aac122bd4f6e

8.證明:(1)∵{an}是等差數(shù)列,∴2ak+1=ak+ak+2,故方程akx2+2ak+1x+ak+2=0可變?yōu)?akx+ak+2)(x+1)=0,

∴當(dāng)k取不同自然數(shù)時(shí),原方程有一個(gè)公共根-1.

(2)原方程不同的根為xk=6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

 

 

 

 


同步練習(xí)冊(cè)答案