{an}為等差數(shù)列.公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)(1)求證:當(dāng)k取不同自然數(shù)時.此方程有公共根, 查看更多

 

題目列表(包括答案和解析)

{an}為等差數(shù)列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)

(1)求證:當(dāng)k取不同自然數(shù)時,此方程有公共根;

(2)若方程不同的根依次為x1,x2,…,xn,…,

求證:數(shù)列為等差數(shù)列.

查看答案和解析>>

{an}為等差數(shù)列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)
(1)求證:當(dāng)k取不同自然數(shù)時,此方程有公共根;
(2)若方程不同的根依次為x1,x2,…,xn,…,
求證:數(shù)列為等差數(shù)列.

查看答案和解析>>

 {an}為等差數(shù)列,公差d>0,Sn是數(shù)列{an}前n項和,已知,

(1)求數(shù)列{an}的通項公式an ;

(2)令,求數(shù)列{bn}的前n項和Tn .

 

 

查看答案和解析>>

 {an}為等差數(shù)列,公差d>0,Sn是數(shù)列{an}前n項和,已知

(1)求數(shù)列{an}的通項公式an;

(2)令,求數(shù)列{bn}的前n項和Tn

 

 

 

 

 

 

查看答案和解析>>

{an}為等差數(shù)列,公差為d,Sn為其前n項和,S6>S7>S5,則下列結(jié)論中不正確的是( 。
A、d<0B、S11>0C、S12<0D、S13<0

查看答案和解析>>

       難點磁場

6ec8aac122bd4f6e解法一:將Sm=30,S2m=100代入Sn=na1+6ec8aac122bd4f6ed,得:

6ec8aac122bd4f6e                                               

6ec8aac122bd4f6e

解法二:由6ec8aac122bd4f6e知,要求S3m只需求ma1+6ec8aac122bd4f6e],將②-①得ma1+ 6ec8aac122bd4f6ed=70,∴S3m=210.

解法三:由等差數(shù)列{an}的前n項和公式知,Sn是關(guān)于n的二次函數(shù),即Sn=An2+Bn(A、B是常數(shù)).將Sm=30,S2m=100代入,得

6ec8aac122bd4f6e,∴S3m=A?(3m)2+B?3m=210

解法四:S3m=S2m+a2m+1+a2m+2+…+a3m=S2m+(a1+2md)+…+(am+2md)=S2m+(a1+…+am)+m?2md=S2m+Sm+2m2d.

由解法一知d=6ec8aac122bd4f6e,代入得S3m=210.

解法五:根據(jù)等差數(shù)列性質(zhì)知:Sm,S2mSm,S3mS2m也成等差數(shù)列,從而有:2(S2mSm)=Sm+(S3mS2m)

S3m=3(S2mSm)=210

解法六:∵Sn=na1+6ec8aac122bd4f6ed,

6ec8aac122bd4f6e=a1+6ec8aac122bd4f6ed

∴點(n, 6ec8aac122bd4f6e)是直線y=6ec8aac122bd4f6e+a1上的一串點,由三點(m,6ec8aac122bd4f6e),(2m, 6ec8aac122bd4f6e),(3m, 6ec8aac122bd4f6e)共線,易得S3m=3(S2mSm)=210.

解法七:令m=1得S1=30,S2=100,得a1=30,a1+a2=100,∴a1=30,a2=70

a3=70+(70-30)=110

S3=a1+a2+a3=210

答案:210

殲滅難點訓(xùn)練

一、1.解析:利用等比數(shù)列和的性質(zhì).依題意,6ec8aac122bd4f6e,而a1=-1,故q≠1,

6ec8aac122bd4f6e,根據(jù)等比數(shù)列性質(zhì)知S5,S10S5,S15S10,…,也成等比數(shù)列,且它的公比為q5,∴q5=-6ec8aac122bd4f6e,即q=-6ec8aac122bd4f6e.

6ec8aac122bd4f6e

答案:B

二、2.解析:解出a、b,解對數(shù)不等式即可.

答案:(-∞,8)

3.解析:利用S/S=6ec8aac122bd4f6e得解.

答案:第11項a11=29

4.解法一:賦值法.

解法二:

b=aq,c=aq2,x=6ec8aac122bd4f6e(a+b)=6ec8aac122bd4f6ea(1+q),y=6ec8aac122bd4f6e(b+c)=6ec8aac122bd4f6eaq(1+q),

6ec8aac122bd4f6e =6ec8aac122bd4f6e=2.

答案:2

三、5.(1)解:依題意有:6ec8aac122bd4f6e

解之得公差d的取值范圍為-6ec8aac122bd4f6ed<-3.

(2)解法一:由d<0可知a1>a2>a3>…>a12>a13,因此,在S1,S2,…,S12Sk為最大值的條件為:ak≥0且ak+1<0,即6ec8aac122bd4f6e

a3=12,∴6ec8aac122bd4f6e,∵d<0,∴2-6ec8aac122bd4f6ek≤3-6ec8aac122bd4f6e

∵-6ec8aac122bd4f6ed<-3,∴6ec8aac122bd4f6e<-6ec8aac122bd4f6e<4,得5.5<k<7.

因為k是正整數(shù),所以k=6,即在S1,S2,…,S12中,S6最大.

解法二:由d<0得a1>a2>…>a12>a13,因此,若在1≤k≤12中有自然數(shù)k,使得ak≥0,且ak+1<0,則SkS1,S2,…,S12中的最大值.由等差數(shù)列性質(zhì)得,當(dāng)mn、p、qN*,且m+n=p+q時,am+an=ap+aq.所以有:2a7=a1+a13=6ec8aac122bd4f6eS13<0,∴a7<0,a7+a6=a1+a12=6ec8aac122bd4f6eS12>0,∴a6≥-a7>0,故在S1,S2,…,S12S6最大.

解法三:依題意得:6ec8aac122bd4f6e

6ec8aac122bd4f6e最小時,Sn最大;

∵-6ec8aac122bd4f6ed<-3,∴6<6ec8aac122bd4f6e(5-6ec8aac122bd4f6e)<6.5.從而,在正整數(shù)中,當(dāng)n=6時,[n6ec8aac122bd4f6e (5-6ec8aac122bd4f6e)]2最小,所以S6最大.

點評:該題的第(1)問通過建立不等式組求解屬基本要求,難度不高,入手容易.第(2)問難度較高,為求{Sn}中的最大值Sk,1≤k≤12,思路之一是知道Sk為最大值的充要條件是ak≥0且ak+1<0,思路之三是可視Snn的二次函數(shù),借助配方法可求解.它考查了等價轉(zhuǎn)化的數(shù)學(xué)思想、邏輯思維能力和計算能力,較好地體現(xiàn)了高考試題注重能力考查的特點.而思路之二則是通過等差數(shù)列的性質(zhì)等和性探尋數(shù)列的分布規(guī)律,找出“分水嶺”,從而得解.

6.解:(1)由題意知a52=a1?a17,即(a1+4d)2=a1(a1+16d)6ec8aac122bd4f6ea1d=2d2,

d≠0,∴a1=2d,數(shù)列{6ec8aac122bd4f6e}的公比q=6ec8aac122bd4f6e=3,

6ec8aac122bd4f6e=a1?3n1                                                                                         ①

6ec8aac122bd4f6e=a1+(bn-1)d=6ec8aac122bd4f6e                                                                     ②

由①②得a1?3n1=6ec8aac122bd4f6e?a1.∵a1=2d≠0,∴bn=2?3n1-1.

(2)Tn=C6ec8aac122bd4f6eb1+C6ec8aac122bd4f6eb2+…+C6ec8aac122bd4f6ebn=C6ec8aac122bd4f6e (2?30-1)+C6ec8aac122bd4f6e?(2?31-1)+…+C6ec8aac122bd4f6e(2?3n1-1)=6ec8aac122bd4f6e(C6ec8aac122bd4f6e+C6ec8aac122bd4f6e?32+…+C6ec8aac122bd4f6e?3n)-(C6ec8aac122bd4f6e+C6ec8aac122bd4f6e+…+C6ec8aac122bd4f6e)=6ec8aac122bd4f6e[(1+3)n-1]-(2n-1)= 6ec8aac122bd4f6e?4n-2n+6ec8aac122bd4f6e,

6ec8aac122bd4f6e

7.解:∵{an}為等差數(shù)列,{bn}為等比數(shù)列,∴a2+a4=2a3,b2?b4=b32,

已知a2+a4=b3,b2?b4=a3,∴b3=2a3,a3=b32,

b3=2b32,∵b3≠0,∴b3=6ec8aac122bd4f6e,a3=6ec8aac122bd4f6e.

a1=1,a3=6ec8aac122bd4f6e,知{an}的公差d=-6ec8aac122bd4f6e,

S10=10a1+6ec8aac122bd4f6ed=-6ec8aac122bd4f6e.

b1=1,b3=6ec8aac122bd4f6e,知{bn}的公比q=6ec8aac122bd4f6eq=-6ec8aac122bd4f6e,

6ec8aac122bd4f6e

8.證明:(1)∵{an}是等差數(shù)列,∴2ak+1=ak+ak+2,故方程akx2+2ak+1x+ak+2=0可變?yōu)?akx+ak+2)(x+1)=0,

∴當(dāng)k取不同自然數(shù)時,原方程有一個公共根-1.

(2)原方程不同的根為xk=6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

 

 

 

 


同步練習(xí)冊答案