重慶市分水中學(xué)高2009屆三月月考數(shù)學(xué)試題(理科)
一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
1.設(shè)≤4},,( )
A. B.{3} C.Ф D.≤≤
2.已知為虛數(shù)單位,且,則的值為( )
A.4 B. C. D.
3.在等比數(shù)列的值為( )
A.1 B.
4.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱, 則的值是( )
A. B. C. D.
5.拋物線的準(zhǔn)線與雙曲線的左準(zhǔn)線重合,則此雙曲線的漸近線方程是( )
A. B. C. D.
6.函數(shù)f(x)=的部分圖象是( )
A. B. C. D.
7.已知函數(shù)滿足,則的解是( )
A. B. C. D.
8.在正方體上任取三個(gè)頂點(diǎn)連成三角形,則所得的三角形是等腰三角形的概率是( )
A. B. C. D.
9.已知直線與圓C:相交于A、B兩點(diǎn),且 的面.是,則的值是( )
A. B. C. D.與的值有關(guān)的數(shù)
10.將面積為2的長(zhǎng)方形ABCD沿對(duì)角線AC折起,使二面角D-AC-B的大小為,則三棱錐D-ABC的外接球的體積的最小值是( )
A. B. C. D.與的值有關(guān)的數(shù)
二、填空題:本大題共5小題,每小題5分,共25分.把答案填在答題卡中對(duì)應(yīng)題號(hào)后的橫線上。
11.設(shè),則導(dǎo)函數(shù)的展開式中x2的系數(shù)是___________.
12.已知點(diǎn)P(x,y)在不等式組表示的平面區(qū)域內(nèi)運(yùn)動(dòng),則的取值范圍是___________.
13.已知函數(shù)是奇函數(shù),則當(dāng)時(shí),,設(shè)的反函數(shù)是,則 .
14.數(shù)列1,1,2,1,1,3,1,1,1,4,1,1,1,1,5,…,,…的第2008項(xiàng)為___________,前2008項(xiàng)的和為___________.
15.如圖,在平面斜坐標(biāo)中,斜坐標(biāo)定義為
(其中分別為斜坐標(biāo)系的x軸,y軸
的單位向量),則點(diǎn)P的坐標(biāo)為。若
且動(dòng)點(diǎn)滿足,則點(diǎn)M在斜坐標(biāo)系中的
軌跡方程為___________.
三、解答題:本大題共6小題,共75分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
16.(本小題滿分12分)
已知,
(1)求的最小正周期與單調(diào)遞減區(qū)間;
(2)在中,、、c分別是角的對(duì)邊,若的面積為,求的值.
17.(本小題滿分12分)
甲、乙兩人對(duì)同一個(gè)目標(biāo)各射擊一次,擊中目標(biāo)的概率分別是和. 現(xiàn)他們對(duì)同一個(gè)目標(biāo)各射擊兩次,已知“甲擊中目標(biāo)的次數(shù)減去乙擊中目標(biāo)的次數(shù)的差不超過
(1)求P的值;
(2)設(shè)在第一次射擊中目標(biāo)被甲乙兩人擊中的總次數(shù)為,求的分布列與期望.
18.(本小題滿分12分)
如圖,五面體中,.底
面是正三角形,.四邊形是矩形,二面角
為直二面角.
(1)在上運(yùn)動(dòng),當(dāng)在何處時(shí),有平面,并
且說明理由;
(2)當(dāng)平面時(shí),求二面角的余弦值.
19.(本小題滿分13分)
為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校100名高三學(xué)生的視力情況,得到頻率分
布直方圖,如右圖所示;由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)從左到右依次是等比數(shù)列的前四項(xiàng),后6組的頻數(shù)從左到右依次是等差數(shù)列的前六項(xiàng).
(1)求數(shù)列和{bn}的通項(xiàng)公式;
(2)求視力不小于5.0的學(xué)生人數(shù);
(3)設(shè),
求數(shù)列的通項(xiàng)公式.
20.(本小題滿分13分)
已知分別是橢圓的左右焦點(diǎn),其左準(zhǔn)線與軸相交于點(diǎn)N,并且滿足,設(shè)A、B是上半橢圓上滿足的兩點(diǎn),其中.
(1)求此橢圓的方程;
(2)求直線AB的斜率的取值范圍.
21.(本小題滿分13分)
已知函數(shù),.
(1)求在區(qū)間的最小值;
(2)求證:若,則不等式≥對(duì)于任意的恒成立;
(3)求證:若,則不等式≥對(duì)于任意的恒成立.
一、選擇題:本大題共10小題,每小題5分,共50分.
CBCDB DADCA
二、填空題:本大題共5小題,每小題5分,共25分.
11.90 12.[) 13. 14.1 ;3899 15.
三、解答題:本大題共6小題,共75分.
16.(本小題滿分13分)
解:(1)
……3分……4分
令
的單調(diào)區(qū)間,k∈Z ......6分
(2)由得 .....7分
又為的內(nèi)角......9分
...11分
....12分
17. (本小題滿分13分)
解:(1)記“甲擊中目標(biāo)的次數(shù)減去乙擊中目標(biāo)的次數(shù)為
,解得.....4分
(2)的所有可能取值為0,1,2.記“在第一次射擊中甲擊中目標(biāo)”為事件;記“在第一次射擊中乙擊中目標(biāo)”為事件.
則,
,.....10分
所以的分布列為
0
1
2
P
∴=.....12分
18. (本小題滿分13分)
解:(1)當(dāng)為中點(diǎn)時(shí),有平面
證明:連結(jié)交于,連結(jié)
∵四邊形是矩形 ∴為中點(diǎn)
又為中點(diǎn),從而
∵平面,平面
∴平面.....4分
(2)建立空間直角坐標(biāo)系如圖所示,
則,,,,
.....6分
所以,.
設(shè)為平面的法向量,則有,即
令,可得平面的一個(gè)法向量為,.....9分
而平面的一個(gè)法向量為 .....10分
所以
所以二面角的余弦值為 .....12分
(用其它方法解題酌情給分)
19.(本小題滿分12分)
解:(1)由題意知
因此數(shù)列是一個(gè)首項(xiàng).公比為3的等比數(shù)列,所以......2分
又=100―(1+3+9)
所以=87,解得
因此數(shù)列是一個(gè)首項(xiàng),公差為―5的等差數(shù)列,
所以 .....4分
(2) 求視力不小于5.0的學(xué)生人數(shù)為.....7分
(3) 由 ①
可知,當(dāng)時(shí), ②
①-②得,當(dāng)時(shí), , www.zxsx.com
, .....11分
又
因此數(shù)列是一個(gè)從第2項(xiàng)開始的公比為3的等比數(shù)列,
數(shù)列的通項(xiàng)公式為.....13分
20.(本小題滿分12分)
解:(1)由于,
∴,解得,
∴橢圓的方程是.....3分
(2)∵,∴三點(diǎn)共線,
而,設(shè)直線的方程為,
由消去得:
由,解得.....6分
設(shè),由韋達(dá)定理得①,
又由得:,∴②.
將②式代入①式得:,
消去得: .....10分
設(shè),當(dāng)時(shí), 是減函數(shù),
∴, ∴, www.zxsx.com
解得,又由得,
∴直線AB的斜率的取值范圍是.....13分
21. (本小題滿分12分)
(1)解:
①若
∵,則,∴,即.
∴在區(qū)間是增函數(shù),故在區(qū)間的最小值是
.....2分
②若
令,得.
又當(dāng)時(shí),;當(dāng)時(shí),,
∴在區(qū)間的最小值是.....4分
(2)證明:當(dāng)時(shí),,則,
∴,
當(dāng)時(shí),有,∴在內(nèi)是增函數(shù),
∴,
∴在內(nèi)是增函數(shù),www.zxsx.com
∴對(duì)于任意的,恒成立.....7分
(3)證明:
,
令
則當(dāng)時(shí),≥
,.....10分
令,則,www.zxsx.com
當(dāng)時(shí), ;當(dāng)時(shí),;當(dāng)時(shí),,
則在是減函數(shù),在是增函數(shù),
∴,
∴,
∴,即不等式≥對(duì)于任意的恒成立.....13分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com