2009年廣東省初中畢業(yè)生學(xué)業(yè)考試
數(shù)學(xué)試卷
說明:全卷共4頁(yè),考試用時(shí)100分鐘,滿分120分.
一、選擇題(本大題5小題,每小題3分,共15分)在每小題列出的四個(gè)選項(xiàng)中,只有一個(gè)是正確的,請(qǐng)把答題卡上對(duì)應(yīng)題目所選的選項(xiàng)涂黑.
1. 4的算術(shù)平方根是( ) .
A.±2 B.
2. 計(jì)算結(jié)果是( )
A. B. C. D.
3. 如圖所示幾何體的主(正)視圖是( )
4.《廣東省2009年重點(diǎn)建設(shè)項(xiàng)目計(jì)劃(草案)》顯示,港珠澳大橋工程估算總投資726億元,用科學(xué)計(jì)數(shù)法表示正確的是( )
A. B.元 C.元 D.元
5. 如圖所示的矩形紙片,先沿虛線按箭頭方向向右對(duì)折,接著將對(duì)折后的紙片沿虛線剪下
一個(gè)小圓和一個(gè)小三角形,然后將紙片打開是下列圖中的哪一個(gè)( )
二、填空題(本大題5小題,每小題4分,共20分)請(qǐng)將下列各題的正確答案填在答題卡相應(yīng)的位置上.
6.分解因式=_______________________.
7.已知⊙O的直徑AB=
8.一種商品原價(jià)120元,按八折(即原價(jià)的80%)出售,則現(xiàn)售價(jià)應(yīng)為__________元.
9.在一個(gè)不透明的布袋中裝有2個(gè)白球和n個(gè)黃球,它們除顏色不同外,其余均相同,若
從中隨機(jī)摸出一球,摸到黃球的概率是,則n=__________________.
10.用同樣規(guī)格的黑白兩種顏色的正方形瓷磚,按下圖的方式鋪地板,則第(3)個(gè)圖形中
有黑色瓷磚________塊,第n個(gè)圖形中需要黑色瓷磚_______________塊(用含n的代數(shù)式
表示).
三、解答題(一)(本大題5小題,每小題6分,共30分)
11.計(jì)算sin30°+.
12.解方程
13.如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖像與反比例函數(shù)的圖像在第一象限相交于點(diǎn)A,過點(diǎn)A分別作x 軸、y軸的垂線,垂足為點(diǎn)B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.
14.如圖所示,△ABC是等邊三角形,D點(diǎn)是AC的中點(diǎn),延長(zhǎng)BC到E,使CE=CD.
(1) 用尺規(guī)作圖的方法,過D點(diǎn)作DM⊥BE,垂足是M(不寫作法,保留作圖痕跡);
(2)求證:BM=EM.
15. 如圖所示,A、B兩城市相距
四、解答題(二)(本大題4小題,每小題7分,共28分)
16.某種電腦病毒傳播非?欤绻慌_(tái)電腦被感染,經(jīng)過兩輪被感染后就會(huì)有81臺(tái)電腦被感染.請(qǐng)你用學(xué)過的知識(shí)分析,每輪感染中平均一臺(tái)電腦會(huì)感染幾臺(tái)電腦?若病毒得不到有效控制,3輪感染后,被感染的電腦會(huì)不會(huì)超過700臺(tái)?
17.某中學(xué)學(xué)生會(huì)為了解該校學(xué)生喜歡球類活動(dòng)的情況,采取抽樣調(diào)查地方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛好,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖(如圖1、圖2,要求每位同學(xué)只能選擇一種自己喜歡的球類;圖中用乒乓球、足球、排球、籃球代表喜歡這四種球類中的某一種球類的學(xué)生人數(shù)),請(qǐng)你根據(jù)圖中提供的信息解答下列問題:
(1)在這次研究中,一共調(diào)查了多少位學(xué)生?
(2)喜歡排球的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角是多少度?
(3)補(bǔ)全頻數(shù)分布折線統(tǒng)計(jì)圖.
18.在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AB=5,AC=6.過D點(diǎn)作DE∥AC交BC的延長(zhǎng)線于點(diǎn)E.
(1)求△BDE的周長(zhǎng);
(2)點(diǎn)P為線段BC上的點(diǎn),連接PO并延長(zhǎng)交AD于點(diǎn)Q.求證:BP=DQ.
19.如圖所示,在矩形ABCD中,AB=12,AC=20,兩條對(duì)角線相交于點(diǎn)O.以O(shè)B、OC為鄰邊作第1個(gè)平行四邊形,對(duì)角線相交于點(diǎn);再以為鄰邊作第2個(gè)平行四邊形,對(duì)角線相交于點(diǎn);再以為鄰邊作第3個(gè)平行四邊形……依此類推.
(1)求矩形ABCD的面積;
(2)求第1個(gè)平行四邊形、第2個(gè)平行四邊形 和第6個(gè)平行四邊形的面積.
五、解答題(三)(本大題3小題,每小題9分,共27分)
20.(1)如圖1,圓內(nèi)接△ABC中,AB=BC=CA,OD、OE為⊙O的半徑,OD⊥BC于點(diǎn)F,OE⊥AC于點(diǎn)G,求證:陰影部分四邊形OFCG的面積是△ABC的面積的.
(2)如圖2,若∠DOE保持120°角度不變,求證:當(dāng)∠DOE繞著O點(diǎn)旋轉(zhuǎn)時(shí),由兩條半徑和△ABC的兩條邊圍成的圖形(圖中陰影部分)面積始終是△ABC的面積的.
21.小明用下面的方法求出方程的解,請(qǐng)你仿照他的方法求出下面另外兩個(gè)方程的解,并把你的解答過程填寫在下面的表格中.
方程
換元法得新方程
解新方程
檢驗(yàn)
求原方程的解
22. 正方形ABCD邊長(zhǎng)為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直,
(1)證明:Rt△ABM ∽R(shí)t△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)Rt△ABM ∽R(shí)t△AMN,求此時(shí)x的值.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com