以為首項(xiàng)的等差數(shù)列.當(dāng)且僅當(dāng)n=10時(shí).其前n項(xiàng)和最小.則公差d的取值范圍是( ) A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

以-24為首項(xiàng)的等差數(shù)列{an},當(dāng)且僅當(dāng)n=10時(shí),其前n項(xiàng)和最小,則公差d的取值范圍是( 。
A.d>
12
5
B.
12
5
<d<
8
3
C.
12
5
≤d<
8
3
D.
12
5
<d≤
8
3

查看答案和解析>>

(09年湖北補(bǔ)習(xí)學(xué)校聯(lián)考文)以為首項(xiàng)的等差數(shù)列,當(dāng)且僅當(dāng)時(shí),其前n項(xiàng)和最小,則公差d的取值范圍是                                                                 (  

A.       B.       C.       D.

查看答案和解析>>

(2009•天門模擬)以-24為首項(xiàng)的等差數(shù)列{an},當(dāng)且僅當(dāng)n=10時(shí),其前n項(xiàng)和最小,則公差d的取值范圍是(  )

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>


同步練習(xí)冊(cè)答案