21. 已知拋物線.橢圓.雙曲線都經(jīng)過(guò)點(diǎn)M(1.2).它們?cè)趚軸上有共同焦點(diǎn).橢圓和雙曲線的對(duì)稱(chēng)軸是坐標(biāo)軸.拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn). (Ⅰ)求這三條曲線方程, .A為拋物線上任意一點(diǎn).是否存在垂直于x軸的直線l被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在.求出l的方程,若不存在.說(shuō)明理由. 武漢市部分重點(diǎn)中學(xué)2008--2009學(xué)年度新高三起點(diǎn)考試 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分14分)

已知拋物線、橢圓、雙曲線都經(jīng)過(guò)點(diǎn)M(1,2),它們?cè)趚軸上有共同焦點(diǎn),橢圓和雙曲線的對(duì)稱(chēng)軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)。

(Ⅰ)求這三條曲線方程;

(Ⅱ)若定點(diǎn)P(3,0),A為拋物線上任意一點(diǎn),是否存在垂直于x軸的直線l被以AP為直徑的圓截得的弦長(zhǎng)為定值?若存在,求出l的方程;若不存在,說(shuō)明理由。

查看答案和解析>>

(本小題滿(mǎn)分14分)

已知F1,F2分別是橢圓+=1的左、右焦點(diǎn),曲線C是以坐標(biāo)原點(diǎn)為頂點(diǎn),以F2為焦點(diǎn)的拋物線,自點(diǎn)F1引直線交曲線CP、Q兩個(gè)不同的交點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)記為M.設(shè)=λ.

(Ⅰ)求曲線C的方程;

(Ⅱ)證明:=-λ;

(Ⅲ)若λ∈[2,3],求|PQ|的取值范圍.

 

 

查看答案和解析>>

(本小題滿(mǎn)分14分)

設(shè)橢圓方程為拋物線方程為如圖4所示,過(guò)點(diǎn)軸的平行線,與拋物線在第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)過(guò)橢圓的右焦點(diǎn)

       (1)求滿(mǎn)足條件的橢圓方程和拋物線方程;

       (2)設(shè)A,B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo)) 。

查看答案和解析>>

(本小題滿(mǎn)分14分)設(shè)b>0,橢圓方程為,拋物線方程為.如圖4所示,過(guò)點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在

第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)

過(guò)橢圓的右焦點(diǎn).

(1)求滿(mǎn)足條件的橢圓方程和拋物線方程;

(2)設(shè)A,B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在

拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?

若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由

(不必具體求出這些點(diǎn)的坐標(biāo)).

查看答案和解析>>

(本小題滿(mǎn)分14分)

設(shè)橢圓方程為拋物線方程為如圖4所示,過(guò)點(diǎn)軸的平行線,與拋物線在第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)過(guò)橢圓的右焦點(diǎn)

       (1)求滿(mǎn)足條件的橢圓方程和拋物線方程;

       (2)設(shè)AB分別是橢圓長(zhǎng)軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo)) 。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案