如圖.橢圓的標(biāo)準(zhǔn)方程為.P為橢圓上的一點(diǎn).且滿足,(1)求三角形PF1F2的面積. 查看更多

 

題目列表(包括答案和解析)

如圖,橢圓的標(biāo)準(zhǔn)方程為數(shù)學(xué)公式,P為橢圓上的一點(diǎn),且滿足PF1⊥PF2
(1)求三角形PF1F2的面積.
(2)若此橢圓長(zhǎng)軸為8,離心率為數(shù)學(xué)公式,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

如圖,橢圓的標(biāo)準(zhǔn)方程為,P為橢圓上的一點(diǎn),且滿足PF1⊥PF2
(1)求三角形PF1F2的面積.
(2)若此橢圓長(zhǎng)軸為8,離心率為,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

如圖,橢圓的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1(a>b>0)
,P為橢圓上的一點(diǎn),且滿足PF1⊥PF2,
(1)求三角形PF1F2的面積.
(2)若此橢圓長(zhǎng)軸為8,離心率為
3
2
,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

如圖,橢圓的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1(a>b>0)
,P為橢圓上的一點(diǎn),且滿足PF1⊥PF2,
(1)求三角形PF1F2的面積.
(2)若此橢圓長(zhǎng)軸為8,離心率為
3
2
,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

如圖,橢圓的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸端點(diǎn)為A、B,右焦點(diǎn)為F,且
AF
FB
=1
,|
OF
|=1

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓的右焦點(diǎn)F作直線l1,l2,直線l1與橢圓分別交于點(diǎn)M、N,直線l2與橢圓分別交于點(diǎn)P、Q,且|
MP
|2+|
NQ
|2=|
NP
|2+|
MQ
|2
,求四邊形MPNQ的面積S的最小值.

查看答案和解析>>

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

D

A

A

D

B

C

C

B

C

D

二、填空題

11.     cosx+sinx          _                   12.

13._____  -1____________                    14.

15.                   16.

17.

三、解答題

18.解:由橢圓的標(biāo)準(zhǔn)方程知橢圓的焦點(diǎn)為,離心率為………………3分

因?yàn)殡p曲線與橢圓有相同的焦點(diǎn),所以,雙曲線焦點(diǎn)在x軸上,c=4,………………2分

又雙曲線與橢圓的離心率之和為,故雙曲線的離心率為2,所以a=2………………4分

又b2=c2-a2=16-4=12!2分

所以雙曲線的標(biāo)準(zhǔn)方程為!1分

19.解:p真:m<0…………………………………………………………………………2分

q真:……………………………………………………………2分

故-1<m<1。…………………………………………………………………………………2分

都是假命題知:p真q假,………………………………………………4分

!4分

20.解:(1)設(shè)|PF2|=x,則|PF1|=2a-x……………………………………………………2分

,∴, ∴…………1分

,……………………………………………………………………2分

………………………………2分

(2)由題知a=4,,故………………………………………………1分

,…………………………………………………………………1分

……………………………………2分

,代入橢圓方程得,………………………………………2分

故Q點(diǎn)的坐標(biāo)為,,。

…………………………………………………………………………………………………2分

21.解:(1)由函數(shù),求導(dǎo)數(shù)得,…1分

由題知點(diǎn)P在切線上,故f(1)=4,…………………………………………………………1分

又切點(diǎn)在曲線上,故1+a+b+c=4①…………………………………………………………1分

,故3+2a+b=3②………………………………………………………………1分

③……………………2分

……………………1分

(2)…………………………1分

x

-2

+

0

0

+

極大值

極小值

有表格或者分析說明…………………………………………………………………………3分

,…………………………………………………………2分

∴f(x)在[-3,1]上最大值為13。故m的取值范圍為{m|m>13}………………………2分

22.解:(1)由題意設(shè)過點(diǎn)M的切線方程為:,…………………………1分

代入C得,則,………………2分

,即M(-1,).………………………………………2分

另解:由題意得過點(diǎn)M的切線方程的斜率k=2,…………………………………………1分

設(shè)M(x0,y0),,………………………………………………………………1分

由導(dǎo)數(shù)的幾何意義可知2x0+4=2,故x0= -1,……………………………………………2分

代入拋物線可得y0=,點(diǎn)M的坐標(biāo)為(-1,)……………………………………1分

(2)假設(shè)在C上存在點(diǎn)滿足條件.設(shè)過Q的切線方程為:,代入,

.………………………………………………………2分

時(shí),由于,…………………2分

當(dāng)a>0時(shí),有

或  ;……………………………………2分

當(dāng)a≤0時(shí),∵k≠0,故 k無解!1分

若k=0時(shí),顯然也滿足要求.…………………………………………1分

綜上,當(dāng)a>0時(shí),有三個(gè)點(diǎn)(-2+,),(-2-,)及(-2,-),且過這三點(diǎn)的法線過點(diǎn)P(-2,a),其方程分別為:

x+2y+2-2a=0,x-2y+2+2a=0,x=-2。

當(dāng)a≤0時(shí),在C上有一個(gè)點(diǎn)(-2,-),在這點(diǎn)的法線過點(diǎn)P(-2,a),其方程為:x=-2。……………………………………………………………………………………3分

 

 

 

 

 


同步練習(xí)冊(cè)答案