題目列表(包括答案和解析)
(12分)已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn)O,準(zhǔn)線方程是,過點(diǎn)的直線與拋物線C相交于不同的兩點(diǎn)A,B
(I)求拋物線C的方程及直線的斜率的取值范圍;
(Ⅱ)求(用表示)
AB |
已知雙曲線C的中心在坐標(biāo)原點(diǎn)O,兩條準(zhǔn)線的距離為,其中一個(gè)焦點(diǎn)恰與拋物線x 2 + 10 x 4 y + 21 = 0的焦點(diǎn)重合。
(1)求雙曲線C的方程;
(2)若P為C上任意一點(diǎn),A為雙曲線的右頂點(diǎn),通過P、O的直線與從A所引平行于漸近線的直線分別交于Q、R。試證明:| OP |是| OQ |與| OR |的等比中項(xiàng)。
如圖,已知拋物線C的頂點(diǎn)在原點(diǎn)O,焦點(diǎn)為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)在拋物線C上是否存在點(diǎn)P,使得過點(diǎn)P的直線交拋物線C于另一點(diǎn)Q,滿足PF⊥QP,且PQ與拋物線C在點(diǎn)P處的切線垂直?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
x2 |
a2 |
y2 |
b2 |
| ||
2 |
a2+b2 |
一、選擇題:(每小題5分,共50分)
題號
1
2
3
4
5
6
7
8
9
10
答案
B
D
B
A
C
C
D
A
A
B
二、填空題:(每小題4分,共24分)
11.; 12.; 13.; 14.; 15.4 16.120
三、解答題:(共76分,以下各題為累計(jì)得分,其他解法請相應(yīng)給分)
17.解:(I)
由,得。
又當(dāng)時(shí),得
(Ⅱ)當(dāng)
即時(shí)函數(shù)遞增。
故的單調(diào)增區(qū)間為,
又由,得,
由
解得
故使成立的的集合是
18.解:(I)設(shè)袋中有白球個(gè),由題意得,
即
解得或(舍),故有白球6個(gè)
(法二,設(shè)黑球有個(gè),則全是黑球的概率為 由
即,解得或(舍),故有黑球4個(gè),白球6個(gè)
(Ⅱ),
0
1
2
3
P
故分布列為
數(shù)學(xué)期望
19.解:(I)取AB的中點(diǎn)O,連接OP,OC PA=PB POAB
又在中,,
在中,,又,故有
又,面ABC
又PO面PAB,面PAB面ABC
(Ⅱ)以O(shè)為坐標(biāo)原點(diǎn), 分別以O(shè)B,OC,OP為軸,軸,軸建立坐標(biāo)系,
如圖,則A
設(shè)平面PAC的一個(gè)法向量為。
得
令,則
設(shè)直線PB與平面PAC所成角為
于是
20.解:(I)由題意設(shè)C的方程為由,得。
設(shè)直線的方程為,由
②代入①化簡整理得
因直線與拋物線C相交于不同的兩點(diǎn),
故
即,解得又時(shí)僅交一點(diǎn),
(Ⅱ)設(shè),由由(I)知
21.解:(I)當(dāng)時(shí),
設(shè)曲線與在公共點(diǎn)()處的切線相同,則有
即 解得或(舍)
又故得公共點(diǎn)為,
切線方程為 ,即
(Ⅱ),設(shè)在()處切線相同,
故有
即
由①,得(舍)
于是
令,則
于是當(dāng)即時(shí),,故在上遞增。
當(dāng),即時(shí),,故在上遞減
在處取最大值。
當(dāng)時(shí),b取得最大值
22.解:(I)的對稱軸為,又當(dāng)時(shí),,
故在[0,1]上是增函數(shù)
即
(Ⅱ)
由
得
①―②得 即
當(dāng)時(shí),,當(dāng)時(shí),
于是
設(shè)存在正整數(shù),使對,恒成立。
當(dāng)時(shí),,即
當(dāng)時(shí),
。
當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),
存在正整數(shù)或8,對于任意正整數(shù)都有成立。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com