解:(1)記“恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué) 為事件的, 查看更多

 

題目列表(包括答案和解析)

三個(gè)求職者到某公司應(yīng)聘,該公司為他們提供了A,B,C,D四個(gè)崗位,每人從中任選一個(gè)崗位。

(1)求恰有兩個(gè)崗位沒有被選的概率;

(2)設(shè)選擇A崗位的人數(shù)為,求的分布列及數(shù)學(xué)期望。

【解析】第一問利用古典概型概率公式得到記“恰有2個(gè)崗位沒有被選”為事件A,則

第二問中,可能取值為0,1,2,3, 則  ,

, 

從而得到分布列和期望值。

解:(1)記“恰有2個(gè)崗位沒有被選”為事件A,則……6分

(2)可能取值為0,1,2,3,… 7分

 ,

, 

列出分布列 ( 1分)

 

查看答案和解析>>

(本小題滿分12分)

已知點(diǎn),過點(diǎn)作拋物線的切線,切點(diǎn)在第二象限,如圖.

(Ⅰ)求切點(diǎn)的縱坐標(biāo);

(Ⅱ)若離心率為的橢圓  恰好經(jīng)過切點(diǎn),設(shè)切線交橢圓的另一點(diǎn)為,記切線的斜率分別為,若,求橢圓方程.

21(本小題滿分12分)

已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

(3)證明:.

22.選修4-1:幾何證明選講

如圖,是圓的直徑,是弦,的平分線交圓于點(diǎn),交的延長線于點(diǎn),于點(diǎn)。

(1)求證:是圓的切線;

(2)若,求的值。

23.選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線過點(diǎn)且傾斜角為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點(diǎn);

(1)若,求直線的傾斜角的取值范圍;

(2)求弦最短時(shí)直線的參數(shù)方程。

24. 選修4-5 不等式選講

已知函數(shù)

   (I)試求的值域;

   (II)設(shè),若對(duì),恒有成立,試求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

已知函數(shù)f(x)=
x
ax+b
(a、b為常數(shù)且a≠0)滿足f(2)=1且f(x)=x有唯一解.
(1)求f(x)的表達(dá)式;
(2)記xn=f(xn-1)(n∈N且n>1),且x1=f(1),求數(shù)列{xn}的通項(xiàng)公式.
(3)記 yn=xn•xn+1,數(shù)列{yn}的前n項(xiàng)和為Sn,求證Sn
4
3

查看答案和解析>>

( 不等式選講)不等式(x-1)|x+2|≥0的解集為
[1,+∞)∪{-2}
[1,+∞)∪{-2}

查看答案和解析>>

從某高級(jí)中學(xué)高一年級(jí)的10名優(yōu)秀學(xué)生(其中女生6人,男生4人)中,任選3名學(xué)生作為上海世博志愿者,問恰好選到2女1男的概率是
 
.(用數(shù)值作答)

查看答案和解析>>


同步練習(xí)冊(cè)答案