題目列表(包括答案和解析)
如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB
(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
【解析】本試題主要考查了立體幾何中的運(yùn)用。
(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE為等腰三角形.
取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =.
連接FG,則FG∥EC,F(xiàn)G⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小為120°
在中,已知 ,面積,
(1)求的三邊的長;
(2)設(shè)是(含邊界)內(nèi)的一點(diǎn),到三邊的距離分別是
①寫出所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識求出的取值范圍.
【解析】第一問中利用設(shè)中角所對邊分別為
由得
又由得即
又由得即
又 又得
即的三邊長
第二問中,①得
故
②
令依題意有
作圖,然后結(jié)合區(qū)域得到最值。
如圖,在南北方向直線延伸湖岸上有一港口A,一汽艇以60 km/h的速度從A出發(fā),30分鐘后因故障而停在湖里.已知汽艇出發(fā)后按直線前進(jìn),以后又改成正東方向航行,但不知最初的方向和何時(shí)改變方向.現(xiàn)要去營救,請用圖表示營救的區(qū)域.
在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=
(Ⅰ)求角B的大;
(Ⅱ)設(shè)=(sin(C+),), =(2k,cos2A) (k>1), 有最大值為3,求k的值.
【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運(yùn)用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理=2acosB,所以cosB=,B=
第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A
=2ksinA+-=-+2ksinA+=-+ (k>1).
而0<A<,sinA∈(0,1],故當(dāng)sin=1時(shí),m·n取最大值為2k-=3,得k=.
數(shù)列首項(xiàng),前項(xiàng)和滿足等式(常數(shù),……)
(1)求證:為等比數(shù)列;
(2)設(shè)數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項(xiàng)公式.
(3)設(shè),求數(shù)列的前項(xiàng)和.
【解析】第一問利用由得
兩式相減得
故時(shí),
從而又 即,而
從而 故
第二問中, 又故為等比數(shù)列,通項(xiàng)公式為
第三問中,
兩邊同乘以
利用錯位相減法得到和。
(1)由得
兩式相減得
故時(shí),
從而 ………………3分
又 即,而
從而 故
對任意,為常數(shù),即為等比數(shù)列………………5分
(2) ……………………7分
又故為等比數(shù)列,通項(xiàng)公式為………………9分
(3)
兩邊同乘以
………………11分
兩式相減得
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com