⑥焦點(diǎn)坐標(biāo)為..焦距 -- 6分說(shuō)明:(i)若考生能把上述六條雙曲線的性質(zhì)都寫(xiě)出.建議此小題給滿分8分 查看更多

 

題目列表(包括答案和解析)

(1)求焦點(diǎn)在x軸上,焦距為4,長(zhǎng)半軸為6的橢圓標(biāo)準(zhǔn)方程
(2)求焦點(diǎn)坐標(biāo)為(0,-3)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

(2012•虹口區(qū)一模)已知橢圓P的焦點(diǎn)坐標(biāo)為
0,±1
,長(zhǎng)軸等于焦距的2倍.
(1)求橢圓P的方程;
(2)矩形ABCD的邊AB在y軸上,點(diǎn)C、D落在橢圓P上,求矩形繞y軸旋轉(zhuǎn)一周后所得圓柱體側(cè)面積的最大值.

查看答案和解析>>

下列五個(gè)命題,其中真命題的序號(hào)是
 
(寫(xiě)出所有真命題的序號(hào)).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),當(dāng)m<-2時(shí)C表示橢圓.
(2)在橢圓
x2
45
+
y2
20
=1上有一點(diǎn)P,F(xiàn)1、F2是橢圓的左,右焦點(diǎn),△F1PF2為直角三角形則這樣的點(diǎn)P有8個(gè).
(3)曲線
x2
10-m
+
y2
6-m
=1(m<6)
與曲線
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)漸近線方程為y=±
b
a
x(a>0,b>0)
的雙曲線的標(biāo)準(zhǔn)方程一定是
x2
a2
-
y2
b2
=1

(5)拋物線y=ax2的焦點(diǎn)坐標(biāo)為(0,
1
4a
)

查看答案和解析>>

(2008•上海模擬)已知橢圓C:
x2
a2
+
y2
b2
=1    (a>b>0)

(1)已知橢圓的長(zhǎng)軸是焦距的2倍,右焦點(diǎn)坐標(biāo)為F(1,0),寫(xiě)出橢圓C的方程;
(2)設(shè)K是(1)中所的橢圓上的動(dòng)點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),求線段KO的中點(diǎn)B的軌跡方程;
(3)設(shè)點(diǎn)P是(1)中橢圓C 上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPM,KPN試探究kPM•KPN的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論.

查看答案和解析>>

(13分)已知橢圓的焦點(diǎn)坐標(biāo)為,長(zhǎng)軸等于焦距的2倍.

(1)求橢圓的方程;

(2)矩形的邊軸上,點(diǎn)、落在橢圓上,求矩形繞軸旋轉(zhuǎn)一周后所得圓柱體側(cè)面積的最大值.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案