題目列表(包括答案和解析)
(1)當(dāng)n=1時,≤1+1,不等式成立.
(2)假設(shè)n=k(k∈N*)時,不等式成立,即≤k+1,則n=k+1時,.
∴當(dāng)n=k+1時,不等式成立.
上述證法( )
A.過程全部正確
B.n=1時的驗證不正確
C.歸納假設(shè)不正確
D.沒有用到從n=k到n=k+1的推理
(1)當(dāng)n=1時,≤1+1,不等式成立.
(2)假設(shè)n=k(k∈N*)時,不等式成立,即≤k+1,則n=k+1時,.
∴當(dāng)n=k+1時,不等式成立.
上述證法( )
A.過程全部正確
B.n=1時的驗證不正確
C.歸納假設(shè)不正確
D.沒有用到從n=k到n=k+1的推理
對于不等式≤n+1(n∈N*),某人的證明過程如下:
(1)當(dāng)n=1時,≤1+1,不等式成立.
(2)假設(shè)當(dāng)n=k(k∈N*且k≥1)時不等式成立,即<k+1,則n=k+1時,=<==(k+1)+1,所以當(dāng)n=k+1時,不等式成立.上述證法中,( ).
A.過程全部正確
B.n=1驗得不正確
C.歸納假設(shè)不正確
D.從n=k到n=k+1的推理不正確
對于不等式≤n+1(n∈N+),某學(xué)生的證明過程如下:
(1)當(dāng)n=1時,≤1+1,不等式成立.
(2)假設(shè)n=k(k∈N+)時,不等式成立,即<k+1,則n=k+1時,
=(k+1)+1.
所以當(dāng)n=k+1時,不等式成立.
上述證法
過程全部正確
n=1驗得不正確
歸納假設(shè)不正確
從n=k到n=k+1的推理不正確
已知命題及其證明:
(1)當(dāng)時,左邊=1,右邊=所以等式成立;
(2)假設(shè)時等式成立,即成立,
則當(dāng)時,,所以時等式也成立。
由(1)(2)知,對任意的正整數(shù)n等式都成立。
經(jīng)判斷以上評述
A.命題、推理都正確 B命題不正確、推理正確
C.命題正確、推理不正確 D命題、推理都不正確
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com