(1)當n=1時,左邊=S1=, 查看更多

 

題目列表(包括答案和解析)

用數(shù)學歸納法證明1+a+a2+…+an+1= (nN*,a≠1)時,在驗證n=1成立時,左邊應為某學生在證明等差數(shù)列前n項和公式時,證法如下:

(1)當n=1時,S1=a1顯然成立;

(2)假設當n=k時,公式成立,即Sk=ka1+,

n=k+1時,Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+ d=(k+1)a1+ d,

n=k+1時公式成立.

由(1)(2)知,對nN*時,公式都成立.

以上證明錯誤的是(  )

A.當n取第一個值1時,證明不對

B.歸納假設的寫法不對

C.從n=kn=k+1時的推理中未用歸納假設

D.從n=kn=k+1時的推理有錯誤

查看答案和解析>>


同步練習冊答案