由于.所以只能取. 查看更多

 

題目列表(包括答案和解析)

某單位在改革過程中,計劃創(chuàng)辦一個新的經(jīng)濟實體,該實體所用員工由本單位抽調,調入員工第一年可以在原部門領取原工資的100%,從第二年起,以后的每年只能在原部門領取上一年工資的.在經(jīng)濟實體的收入方面,計劃五年內,第一年屬于投資階段,沒有利潤,第二年每人可獲b元收入,從第三年起每人每年收入可在上一年的基礎上遞增50%,如果某員工在原部門工資收入為每年a元,其調入新經(jīng)濟實體第n年收入為元(n≤5).

(Ⅰ)求

(Ⅱ)請預測,當b=a時,這個員工哪一年的收入最少,最少收入是否低于原工資的85%.

查看答案和解析>>

某地區(qū)對12歲兒童瞬時記憶能力進行調查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學生共有40人,下表為該班學生瞬時記憶能力的調查結果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學生為3人.

     視覺         [來源:]

視覺記憶能力

偏低

中等

偏高

超常

聽覺

記憶

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

由于部分數(shù)據(jù)丟失,只知道從這40位學生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為

(I)試確定、的值;

(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生的概率;

(III)從40人中任意抽取3人,設具有聽覺記憶能力或視覺記憶能力偏高或超常的學生人數(shù)為,求隨機變量的數(shù)學期望

【解析】1)中由表格數(shù)據(jù)可知,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的學生共有(10+a)人.記“視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分

所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分

(2)中由表格數(shù)據(jù)可知,具有聽覺記憶能力或視覺記憶能力超常的學生共有8人.

方法1:記“至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件B,

則“沒有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件

(3)中由于從40位學生中任意抽取3位的結果數(shù)為,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學生共24人,從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的結果數(shù)為,………………………7分

所以從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的概率為,k=0,1,2,3

 

查看答案和解析>>

壯懷激烈千古恨 初出茅廬志已衰

  繼薩凱里之后,大概又過了半個世紀.歐洲“數(shù)學之王”高斯的至友匈牙利數(shù)學家伏爾夫剛·鮑里埃,終身從事證明“第五公設”的研究,由于心血耗盡,毫無成效,便懷著沉重的心情,給那酷愛數(shù)學的兒子亞諾什·鮑耶(1802~1860)寫信,希望小鮑耶“不要再做克服平行公理的嘗試”.他忠告兒子說:“投身于這一貪得無度地吞人們的智慧、精力和心血的無底洞,白花時間在上面,一輩子也證不出這個命題來.”他滿腹心酸地寫到:“我經(jīng)過了這個毫無希望的夜的黑暗,我在這里面埋沒了人生的一切亮光、一切歡樂和一切希望.”最后告誡自己心愛的兒子說:“若再癡戀這一無止無休的勞作,必然會剝奪你生活的一切時間、健康、休息和幸福!”但是,年僅21歲的小鮑耶卻是敢向“無底洞”覓求真知的探索者.他認真吸取前人失敗的教訓,初出茅廬就大顯身手.小鮑耶匠心獨運,大膽創(chuàng)新,決然將“第五公設”換成他自身的否定.從“三角形三個內角和小于180°”這一令人瞠目結舌的假設出發(fā),建立起一套完整協(xié)調、天衣無縫的新幾何體系.小鮑耶滿懷激情地將自己的科學創(chuàng)見向父親報捷.老伏爾夫剛以之見教于至友高斯,不久,高斯復信鮑里埃,信中寫到:“如果我一開始便說我不能稱贊這樣的成果,你一定會感到驚訝.但是,我不能不這樣說,因為稱贊這些成果就等于稱贊我自己.令郎的這些工作,他走過的路,以及所獲得的成果,跟我過去30年至35年前的所思所得幾乎一模一樣.”高斯在回信結尾還開誠布公地提到:“我自己的著作,盡管寫好的只是一部分,我本來也想發(fā)表,因為我怕引某些人的喊聲,現(xiàn)在,有了朋友的兒子能夠這樣寫下來,免得他與我一樣湮沒,那是使我非常高興的.”這位當代數(shù)學大師恐怕做夢也沒想到,他這封推心置腹的信,竟會一舉撞毀初露鋒芒的數(shù)壇新星!

  高斯的復信給小鮑耶帶來意想不到的毀滅性打擊.躊躇滿志的鮑耶誤認為高斯動用自己擁有的崇高權威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權.為此,他痛心疾首,認為自己心血澆灌出來的成果和嘔心瀝血的辛勤工作,竟得不到大家的理解、支持和同情.于是郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學研究.

1.對于“數(shù)學之王”高斯給鮑耶的回信,你有什么看法呢?如果你是高斯,你該怎樣回信?

2.躊躇滿志的鮑耶誤認為“高斯動用自己擁有的崇高權威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權”,進而“郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學研究”.你又有何看法呢?假如你是鮑耶,你又該怎么做呢?

查看答案和解析>>

函數(shù)概念的發(fā)展歷程

  17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經(jīng)度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關系,并根據(jù)這種關系對事物的變化規(guī)律作出判斷,如根據(jù)炮彈的速度推測它能達到的高度和射程.這正是函數(shù)產生和發(fā)展的背景.

  “function”一詞最初由德國數(shù)學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數(shù)學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數(shù)”.

  萊布尼茲用“函數(shù)”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數(shù)學家約翰·伯努利(J.Bernoulli,1667~1748)強調函數(shù)要用公式表示.后來,數(shù)學家認為這不是判斷函數(shù)的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數(shù)學家歐拉(L.Euler,1707~1783)將函數(shù)定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數(shù)”.

  當時很多數(shù)學家對于不用公式表示函數(shù)很不習慣,甚至抱懷疑態(tài)度.函數(shù)的概念仍然是比較模糊的.

  隨著對微積分研究的深入,18世紀末19世紀初,人們對函數(shù)的認識向前推進了.德國數(shù)學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數(shù)”.這個定義較清楚地說明了函數(shù)的內涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現(xiàn),函數(shù)概念又進而用更加嚴謹?shù)募虾蛯Z言表述,這就是本節(jié)學習的函數(shù)概念.

  綜上所述可知,函數(shù)概念的發(fā)展與生產、生活以及科學技術的實際需要緊密相關,而且隨著研究的深入,函數(shù)概念不斷得到嚴謹化、精確化的表達,這與我們學習函數(shù)的過程是一樣的.

你能以函數(shù)概念的發(fā)展為背景,談談從初中到高中學習函數(shù)概念的體會嗎?

1.探尋科學家發(fā)現(xiàn)問題的過程,對指導我們的學習有什么現(xiàn)實意義?

2.萊布尼茲、狄利克雷等科學家有哪些品質值得我們學習?

查看答案和解析>>

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得

;

(2)當時,若,

求證:

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;

解:(1)拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為,

分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;,

,

.

,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設,

分別過作拋物線準線的垂線,垂足分別為,由

及拋物線的定義得,即,則

又由,所以,故命題為真.

補充條件2:“點與點為偶數(shù),關于軸對稱”,即:

“當時,若,且點與點為偶數(shù),關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>


同步練習冊答案