綜上所證可知.方程的三根為一個三角形的三條邊的充要條件是 查看更多

 

題目列表(包括答案和解析)

已知中心在坐標原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關系的運用。

第一問中,可設橢圓的標準方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標準方程為

第二問中,

假設存在這樣的直線,設,MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得

代入1,2式中得到范圍。

(Ⅰ) 可設橢圓的標準方程為 

則由長軸長等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標準方程為

 (Ⅱ) 假設存在這樣的直線,設,MN的中點為

 因為|ME|=|NE|所以MNEF所以

(i)其中若時,則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

 

查看答案和解析>>

正四面體ABCD的棱長為1,棱AB∥平面α,則正四面體上所有點在平面α內的射影所構成的圖形面積的取值范圍為
 

查看答案和解析>>

(2012•肇慶一模)高三某班學生每周用于數學學習的時間x(單位:小時)與數學成績y(單位:分)之間有如下數據:
x 24 15 23 19 16 11 20 16 17 13
y 92 79 97 89 64 47 83 68 71 59
根據統(tǒng)計資料,該班學生每周用于數學學習的時間的中位數是
16.5
16.5
; 根據上表可得回歸方程的斜率為3.53,截距為13.5,若某同學每周用于數學學習的時間為18 小時,則可預測該生數學成績是
77
77
分(結果保留整數).

查看答案和解析>>

某公司為慶祝元旦舉辦了一個抽獎活動,現(xiàn)場準備的抽獎箱里放置了分別標有數字1000、800﹑600、0的四個球(球的大小相同).參與者隨機從抽獎箱里摸取一球(取后即放回),公司即贈送與此球上所標數字等額的獎金(元),并規(guī)定摸到標有數字0的球時可以再摸一次﹐但是所得獎金減半(若再摸到標有數字0的球就沒有第三次摸球機會),求一個參與抽獎活動的人可得獎金的期望值是多少元.

查看答案和解析>>

若在直線l上存在不同的三個點A,B,C,使得關于實數x的方程x2
OA
+x
OB
+
BC
=
0
有解(點O不在l上),則此方程的解集為( 。
A、{-1}
B、{0}
C、{
-1+
5
2
,
-1-
5
2
}
D、{-1,0}

查看答案和解析>>


同步練習冊答案