令得.用累差法可解得 查看更多

 

題目列表(包括答案和解析)

△ABC中,求證:a2+b2+c2≥4
3
△(△為△ABC的面積)
(提示:利用△=
1
2
absinc,c2=a2+b2-2abcosc
,再用求差法)

查看答案和解析>>

△ABC中,求證:a2+b2+c2≥4△(△為△ABC的面積)
(提示:利用,再用求差法)

查看答案和解析>>

如圖,是△的重心,、分別是邊、上的動(dòng)點(diǎn),且、三點(diǎn)共線.

(1)設(shè),將、表示;

(2)設(shè),,證明:是定值;

(3)記△與△的面積分別為.求的取值范圍.

(提示:

【解析】第一問中利用(1)

第二問中,由(1),得;①

另一方面,∵是△的重心,

、不共線,∴由①、②,得

第三問中,

由點(diǎn)的定義知,,

時(shí),;時(shí),.此時(shí),均有

  時(shí),.此時(shí),均有

以下證明:,結(jié)合作差法得到。

解:(1)

(2)一方面,由(1),得;①

另一方面,∵是△的重心,

.  ②

、不共線,∴由①、②,得 

解之,得,∴(定值).

(3)

由點(diǎn)、的定義知,,

時(shí),;時(shí),.此時(shí),均有

  時(shí),.此時(shí),均有

以下證明:.(法一)由(2)知,

,∴

,∴

的取值范圍

 

查看答案和解析>>

(2007•普陀區(qū)一模)現(xiàn)有問題:“對任意x>0,不等式x-a+
1
x+a
>0恒成立,求實(shí)數(shù)a的取值范圍.”有兩位同學(xué)用數(shù)形結(jié)合的方法分別提出了自己的解題思路和答案:
學(xué)生甲:在一個(gè)坐標(biāo)系內(nèi)作出函數(shù)f(x)=
1
x+a
和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
學(xué)生乙:在坐標(biāo)平面內(nèi)作出函數(shù)f(x)=x+a+
1
x+a
的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
則以下對上述兩位同學(xué)的解題方法和結(jié)論的判斷都正確的是( 。

查看答案和解析>>

已知離心率為
3
2
的橢圓C1的頂點(diǎn)A1,A2恰好是雙曲線
x2
3
-y2=1
的左右焦點(diǎn),點(diǎn)P是橢圓上不同于A1,A2的任意一點(diǎn),設(shè)直線PA1,PA2的斜率分別為k1,k2
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)試判斷k1•k2的值是否與點(diǎn)P的位置有關(guān),并證明你的結(jié)論;
(Ⅲ)當(dāng)k1=
1
2
時(shí),圓C2:x2+y2-2mx=0被直線PA2截得弦長為
4
5
5
,求實(shí)數(shù)m的值.
設(shè)計(jì)意圖:考察直線上兩點(diǎn)的斜率公式、直線與圓相交、垂徑定理、雙曲線與橢圓的幾何性質(zhì)等知識,考察學(xué)生用待定系數(shù)法求橢圓方程等解析幾何的基本思想與運(yùn)算能力、探究能力和推理能力.第(Ⅱ)改編自人教社選修2-1教材P39例3.

查看答案和解析>>


同步練習(xí)冊答案