例2.正方形ABCD是一個(gè)圓柱的軸截面.圓柱的半徑為r.一條繩子沿圓柱側(cè)面從A到C旋轉(zhuǎn)的最短路徑是多少?再旋轉(zhuǎn)一周呢? 查看更多

 

題目列表(包括答案和解析)

如圖,邊長(zhǎng)為2的正方形ABCD中,
(1)點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A'.求證:A'D⊥EF
(2)當(dāng)BE=BF=
14
BC時(shí),求三棱錐A'-EFD的體積.

查看答案和解析>>

如圖:長(zhǎng)為3的線段PQ與邊長(zhǎng)為2的正方形ABCD垂直相交于其中心O(PO>OQ).
(1)若二面角P-AB-Q的正切值為-3,試確定O在線段PQ的位置;
(2)在(1)的前提下,以P,A,B,C,D,Q為頂點(diǎn)的幾何體PABCDQ是否存在內(nèi)切球?若存在,試確定其內(nèi)切球心的具體位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

精英家教網(wǎng)如圖,設(shè)線段EF的長(zhǎng)度為1,端點(diǎn)E、F在邊長(zhǎng)為2的正方形ABCD的四邊上滑動(dòng).當(dāng)E、F沿著正方形的四邊滑動(dòng)一周時(shí),EF的中點(diǎn)M所形成的軌跡為G,若G圍成的面積為S,則S=
 

查看答案和解析>>

在邊長(zhǎng)為2的正方形ABCD內(nèi)任取一點(diǎn)P,則點(diǎn)P到正方形中心O的距離小于1的概率為
π
4
π
4

查看答案和解析>>

精英家教網(wǎng)如圖,已知圓O:x2+y2=1,O為坐標(biāo)原點(diǎn).
(1)邊長(zhǎng)為
2
的正方形ABCD的頂點(diǎn)A、B均在圓O上,C、D在圓O外,當(dāng)點(diǎn)A在圓O上運(yùn)動(dòng)時(shí),C點(diǎn)的軌跡為E.
①求軌跡E的方程;
②過(guò)軌跡E上一定點(diǎn)P(x0,y0)作相互垂直的兩條直線l1,l2,并且使它們分別與圓O、軌跡E相交,設(shè)l1被圓O截得的弦長(zhǎng)為a,設(shè)l2被軌跡E截得的弦長(zhǎng)為b,求a+b的最大值.
(2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長(zhǎng)度的最值.

查看答案和解析>>


同步練習(xí)冊(cè)答案