(2)當(dāng)x>0時(shí).證明不等式 查看更多

 

題目列表(包括答案和解析)

(08年銀川一中二模) 關(guān)于函數(shù) (x≠0)有下列命題:(1)函數(shù)圖象關(guān)于Y軸對稱;(2)當(dāng)x>0時(shí),函數(shù)是增函數(shù),當(dāng)x<0時(shí),函數(shù)是減函數(shù);(3)函數(shù)的最小值為lg2;(4)函數(shù)是周期函數(shù)。其中正確命題的序號是__________

查看答案和解析>>

已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=ex+a,f(x)R上是單調(diào)函數(shù),則實(shí)數(shù)a的最小值是(  )

(A)1 (B)-1

(C)-2 (D)2

 

查看答案和解析>>

設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有恒成立,則不等式的解集是

(A) (-2,0) ∪(2,+∞)    (B) (-2,0) ∪(0,2)   (C) (-∞,-2)∪(2,+∞)    (D) (-∞,-2)∪(0,2)

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,已知(n∈N*).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)求證:當(dāng)x>0時(shí),

(Ⅲ)令,數(shù)列的前項(xiàng)和為.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時(shí),.

 

查看答案和解析>>

定義在R上的函數(shù)y=f(x),f(0)≠0,當(dāng)x>0時(shí),f(x)>1,且對任意的a、b∈R,有f(a+b)=f(a)f(b),

求證:f(0)=1;(2)求證:對任意的x∈R,恒有f(x)>0;

(3)證明:f(x)是R上的增函數(shù);(4)若f(x)·f(2x-x2)>1,求x的取值范圍。

查看答案和解析>>

一、選擇題:本大題共8題,每小題5分,共40分。

題號

1

2

3

4

5

6

7

8

 

 

答案

D

B

D

B

C

A

B

B

 

 

二、填空題:本大題共7小題,每小題5分,共30分。

9.55     10.-3     11.    12.      13.1     14.2    15.

三、解答題:本大題共6小題,共80分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

16.(本小題滿分12分)

已知向量,,,設(shè).

(I)求函數(shù)的最小正周期。(II),求的值域。

解:(I)因?yàn)?sub>

                 ………………………………………………………4分

            所以函數(shù)的最小正周期.……………………………………6分

(II)因?yàn)?sub>,

………………………………………………………………………8分

所以……………………………………………………………10分

所以。 ……………………………………………………………… 12分

 

17.(本小題滿分12分)

(1); ………………………………………………………4分

         (2); …………………………………………………………… 8分

         (3)表面積S=48. ……………………………………………………………… 12分

 

18.(本小題滿分14分)

解答(1)x=1+1+1=3  或者x=-1-1-1=-3---------(4分)

 (2)

i

I=3

I=5

P

(0.53)+ (0.53)=0.25

1-0.25=0.75

 

 

 

Ei=3×0.25+5×0.75=4.5---------------(8分)

 (3)

ξ

ξ=1

ξ=3

P

18×0.55=

6×0.55+2×0.53=

 

 

 

 

 

Eξ=1×+3×=----------(14分)

 

所有情況列表(僅供參考)

ξ

x

 

x

 

ξ=1

-1

-1-1+1-1+1

+1

-1-1+1-1+1

 

-1-1+1+1-1

 

-1-1+1+1-1

 

-1+1-1-1+1

 

-1+1-1-1+1

 

-1+1-1+1-1

 

-1+1-1+1-1

 

-1+1+1-1-1

 

-1+1+1-1-1

 

+1-1-1-1+1

 

+1-1-1-1+1

 

+1-1-1+1-1

 

+1-1-1+1-1

 

+1-1+1-1-1

 

+1-1+1-1-1

 

+1+1-1-1-1

 

+1+1-1-1-1

ξ=3

-3

+1-1-1-1-1

+3

-1+1+1+1+1

 

-1+1-1-1-1

 

+1-1+1+1+1

 

-1-1+1-1-1

 

+1+1-1+1+1

 

-1-1-1

 

+1+1+1

 

19、(本小題滿分14分)

 解:(I)∵  ∴  ∴

………3分

………………………………4分

設(shè)  ∴

  ∴…………………………………………6分

……………………………………………………………………7分

(II)∵ ………………………………………………………8分 

…………………………………………………………………9分

     ∴…………………………………………………………10分

     由……………………12分

     …………………………………………………………14分

∴直線EF與拋物線相切。

20.(本小題滿分14分)

解:(1)∵x,y

為恒為零

顯然

又函數(shù)為單調(diào)函數(shù),可得為等差數(shù)列

  從而---------------------------------------------------------(6分)

   (2)∵

是遞增數(shù)列。--------------------------------(12分)

當(dāng)時(shí), ------------------------------------------------------(14分)

 

21、(本小題滿分14分)

解:(1)由已知得函數(shù),且

當(dāng)又∵

當(dāng)

∴函數(shù)的單調(diào)遞增區(qū)間是

(2)設(shè),

  (5分)

當(dāng)

上連續(xù),內(nèi)是增函數(shù)。(7分)

  (8分)

  (9分)

    (10分)

(3)方法一由(1)知,設(shè)

……12分

 (14分)

內(nèi)是增函數(shù)。

 

 


同步練習(xí)冊答案