A.m=.n=一1 B.m= .n=1 查看更多

 

題目列表(包括答案和解析)

m,n為異面直線,P為m,n外一點(diǎn),則過(guò)點(diǎn)P與m,n都平行的平面有( 。

查看答案和解析>>

設(shè)M,N為拋物線C:y=x2上的兩個(gè)動(dòng)點(diǎn),過(guò)M,N分別作拋物線C的切線l1,l2,與x軸分別交于A,B兩點(diǎn),且l1∩l2=P,若|AB|=1,
(1)若|AB|=1,求點(diǎn)P的軌跡方程
(2)當(dāng)A,B所在直線滿(mǎn)足什么條件時(shí),P的軌跡為一條直線?(請(qǐng)千萬(wàn)不要證明你的結(jié)論)
(3)在滿(mǎn)足(1)的條件下,求證:△MNP的面積為一個(gè)定值,并求出這個(gè)定值.

查看答案和解析>>

若M,N是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),P是橢圓C上任意一點(diǎn).若直線PM、PN斜率存在,則它們斜率之積為( 。

查看答案和解析>>

設(shè)M,N為拋物線C:y=x2上的兩個(gè)動(dòng)點(diǎn),過(guò)M,N分別作拋物線C的切線l1,l2,與x軸分別交于A,B兩點(diǎn),且l1∩l2=P,AB=1,則
(Ⅰ)求點(diǎn)P的軌跡方程
(Ⅱ)求證:△MNP的面積為一個(gè)定值,并求出這個(gè)定值.

查看答案和解析>>

設(shè)m,n是異面直線,則(1)一定存在平面α,使m?α,且n∥α;(2)一定存在平面α,使m?α,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距離相等;(4)一定存在無(wú)數(shù)對(duì)平面α和β,使m?α,n?β且α⊥β.上述4個(gè)命題中正確命題的序號(hào)是( 。

查看答案和解析>>

 

一、選擇題:(本大題共12小題每小題5分,共60分)

AADCB  DDBCC  DC

二、填空題:(共4小題,每小題4分,共16分)

13. 14.20  15.32  16.

三、解答題:(共6小題,共74分)

17.解:(1)………………2分

    .………………………………4分

在[0,π]上單調(diào)遞增區(qū)間為.…………………6分

   (2),

    當(dāng)x=0時(shí),,………………………………………8分

    由題設(shè)知…………………………………………10分

解之,得…………………………………………12分

  • <big id="nbudf"></big>

    可建立空間直角坐標(biāo)系A(chǔ)-xyz,由平面幾何知

    識(shí)知:AD=4,D(O,4,O),B(2,0,0)。

    C(2,2,0),P(0,0,2),E(0,0,1),

    F(1,0,1),G(1,1,1).……………2分

       (1)=(1,0,1),=(一1,1,1),

    ?=0

    ∴AF與BG所成的角為……………………………4分

       (2)可證明AD⊥平面APB,平面APB的法向量為n(0,1,0)

    設(shè)平面CPD的法向量為m=(1, y, z),由

      ∴ m=(1,1,2) ……………………………………………………10分

      ∴ …………………………12分

    19.解:填湖面積     填湖及排水設(shè)備費(fèi)   水面經(jīng)濟(jì)收益     填湖造地后收益

              x(畝)      ax2(元)               bx                 cx

       (1)收益不小于指出的條件可以表示為

      所以.……………………………………3分

    顯然a>0,又c>b

    時(shí),此時(shí)所填面積的最大值為畝……………………………7分

       (2)設(shè)該地現(xiàn)在水面m畝.今年填湖造地y畝,

    ,………………9分

    ,所以.

    因此今年填湖造地面積最多只能占現(xiàn)有水面的………………………………12分

     20.(本小題滿(mǎn)分12分)

         解:(1)根據(jù)導(dǎo)數(shù)的幾何意義知f(x)=g′(x)=x2+ax-b

         由已知-2、4是方程x2+ax-b=0的兩個(gè)實(shí)根

         由韋達(dá)定理,,………………5分

    (2)g(x)在區(qū)間[一1,3]上是單調(diào)遞減函數(shù),所以在[一1,3]區(qū)間上恒有

    橫成立

    這只需滿(mǎn)足

    而a2+b2可視為平面區(qū)域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,其中點(diǎn)(-2,3)距離原點(diǎn)最近.所以當(dāng)時(shí),a2+b2 有最小值13. ………………………………12分

    21.解(1)A(a,0),B(0,b),P(x,y)

    ,即……………………………2分

    ,由題意知t>0,

    點(diǎn)P的軌跡方程C為:.…………………………4分

    (2). T=2 時(shí),C為.………………………………………5分

    設(shè)M(x1,y1),則N(-x1,-y1),則MN=

    設(shè)直線MN的方程為

    點(diǎn)Q到MN距離為

    …………………………………………………………………………7分

    ∴SΔQMN=.…………………………………8分

    ∵S2ΔQMN=

    ∴S2ΔQMN=4?9x1y1

    …………………………………………………………11分

    當(dāng)且僅當(dāng)時(shí),等號(hào)成立

    ∴SΔQMN的最大值為……………………………………………………12分

    22.(1)證明:,因?yàn)閷?duì)稱(chēng)軸,所以在[0,1]上為增函數(shù),.……………………………………………………4分

       (2)解:由

    兩式相減得, ………………7分

    當(dāng)n=1時(shí),b1=S1=1

    當(dāng)nㄒ2時(shí),

      ………………9分

       (3)解:由(1)與(2)得  …………10分

    假設(shè)存在正整數(shù)k時(shí),使得對(duì)于任意的正整數(shù)n,都有cnck成立,

    當(dāng)n=1,2時(shí),c2-c1= c2> c1

    當(dāng)n=2時(shí),cn+1-cn=(n-2,

    所以當(dāng)n<8時(shí),cn+1>cn

    當(dāng)n=8時(shí),cn+1=cn

    當(dāng)n>8時(shí),cn+1<cn,   ……………………13分

    所以存在正整數(shù)k=9,使得對(duì)于任意的正整數(shù)n,都有cnck成立。  …………14分

     

     

     

     

     

     


    同步練習(xí)冊(cè)答案