題目列表(包括答案和解析)
函數(shù)在同一個周期內(nèi),當(dāng) 時,取最大值1,當(dāng)時,取最小值。
(1)求函數(shù)的解析式
(2)函數(shù)的圖象經(jīng)過怎樣的變換可得到的圖象?
(3)若函數(shù)滿足方程求在內(nèi)的所有實數(shù)根之和.
【解析】第一問中利用
又因
又 函數(shù)
第二問中,利用的圖象向右平移個單位得的圖象
再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標(biāo)不變,得到的圖象,
第三問中,利用三角函數(shù)的對稱性,的周期為
在內(nèi)恰有3個周期,
并且方程在內(nèi)有6個實根且
同理,可得結(jié)論。
解:(1)
又因
又 函數(shù)
(2)的圖象向右平移個單位得的圖象
再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標(biāo)不變,得到的圖象,
(3)的周期為
在內(nèi)恰有3個周期,
并且方程在內(nèi)有6個實根且
同理,
故所有實數(shù)之和為
命題P:cn=0.
命題Q:當(dāng)x∈[,2]時,函數(shù)f(x)=x+>恒成立.
如果P或Q為真命題,P且Q為假命題,求c的取值范圍.
分析:由cn=0得,0<c<1.∴P:0<c<1,
由x∈[,2]時,函數(shù)f(x)=x+>恒成立,想到<f(x)min,故需求f(x)在[,2]上的最小值.
已知函數(shù)(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為.
(1)求的解析式; (2)當(dāng),求的值域.
【解析】第一問利用三角函數(shù)的性質(zhì)得到)由最低點(diǎn)為得A=2. 由x軸上相鄰的兩個交點(diǎn)之間的距離為得=,即,由點(diǎn)在圖像上的
第二問中,
當(dāng)=,即時,取得最大值2;當(dāng)
即時,取得最小值-1,故的值域為[-1,2]
(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當(dāng)x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22=+2n(n-1)=+(11-m)(-1)=(m-)2+.
∵m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
(2)由(1)知,當(dāng)x2的系數(shù)取得最小值時,m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.設(shè)這時f (x)的展開式為f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
兩式相減得2(a1+a3+a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com