(2)點是橢圓的右頂點.直線與橢圓交于.兩點(在第一象限內).又.是此橢圓上兩點.并且滿足.求證:向量與共線 查看更多

 

題目列表(包括答案和解析)

是橢圓的左焦點,直線方程為,直線軸交于點,、分別為橢圓的左右頂點,已知,且

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過點且斜率為的直線交橢圓于、兩點,求三角形面積.

 

查看答案和解析>>

是橢圓的左焦點,直線方程為,直線軸交于點,、分別為橢圓的左右頂點,已知,且
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率為的直線交橢圓于兩點,求三角形面積.

查看答案和解析>>

是橢圓的左焦點,直線方程為,直線軸交于點,、分別為橢圓的左右頂點,已知,且
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點且斜率為的直線交橢圓于兩點,求三角形面積.

查看答案和解析>>

橢圓C的中心在坐標原點,焦點在x軸上,該橢圓經過點P(1,
3
2
)
且離心率為
1
2

(1)求橢圓C的標準方程;
(2)若直線l:y=kx+m與橢圓C相交A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

橢圓的對稱中心在坐標原點,一個頂點為A(0,2),右焦點F與點B(
2
 , 
2
)
的距離為2.
(1)求橢圓的方程;
(2)是否存在斜率k≠0的直線l:y=kx-2,使直線l與橢圓相交于不同的兩點M,N滿足|
AM 
| = |
AN 
|
,若存在,求直線l的傾斜角α;若不存在,說明理由.

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有一項是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

答案

D

B

A

A

C

B

C

B

C

D

二、填空題:(每小題4分,共24分)

11.     12.800,20%     13.2     14.4     15.     16.1005

三、解答題:(17~20題,每小題12分,第21、22題14分,共計76分)

17.(本題滿分12分)

解:(1)在中,利用余弦定理,

        代入得,

        而是銳角三角形,所以角??????????????????????? 5分

   (2)

        周期

        因為

        所以????????????????????????? 8分

        當時,;

        所以,上的單調減區(qū)間為???????? 12分

18.(本題滿分12分)

解(I)設的中點,連結

       的中點,的中點,

       ==(//) ==(//)

==(//)

      

????????????????????????????????????????????????? 4分

 (Ⅱ)

      

      

 (Ⅲ)由(Ⅱ)知,

      

19.(本題滿分12分)

解:(1)共有10個等可能性的基本事件,列舉如下:(1,2),(1,3),(1,4),(1,5),

       (2,3),(2,4),(2,5)(3,4),(3,5),(4,5)。

(2)記事件“甲同學所抽取的兩題的編號之和小于8但不小于4”為事件A

     由(1)可知事件共含有7個基本事件,列舉如下:(1,3),(1,4),(1,5),(2,3),

(2,4),(2,5),(3,4)

(3)記事件B“做對政治附加題同時還需做對兩道基本題”

     記事件C“做對歷史附加題同時還需至少做對一道基本題”

     記事件D“甲同學得分不低于20分”

    

20.(本題滿分12分)

(1)與由

     切線的斜率切點坐標

     所求切線方程?????????????????????????????? 5分

(2)若函數為上單調增函數,

     則上恒成立,即不等式上恒成立。

     也即上恒成立

     令,上述問題等價于

     而為在上的減函數,

     則,于是為所求????????????????????????? 12分

21.(本題滿分14分)

解(1)由

      

  (2)數列為等差數列,公差                      

       從而

      

       從而

 

 

22.(本題滿分14分)

解:(1)由題知:????? 4分

   (2)因為:,從而的平分線平行,

        所以的平分線垂直于軸;

        由

        不妨設的斜率為,則的斜率;因此的方程分別為:

        ;其中;?????????? 8分

        由得;

        因為在橢圓上;所以是方程的一個根;

        從而;????????????????????????????????????????? 10分

        同理:;從而直線的斜率;

        又;所以;所以所以向量共線。 14分www.ks5u.com

 


同步練習冊答案