(Ⅱ)若函數(shù)在上遞增.求實數(shù)的取值范圍. 查看更多

 

題目列表(包括答案和解析)

若函數(shù)是定義在區(qū)間上的奇函數(shù),且在上單調(diào)遞增,若實數(shù)滿足:,求的取值范圍.  (     )

A.     B.    C.    D.   

查看答案和解析>>

函數(shù)f(x)=x4-4x3+ax2-1在[0,1]上單調(diào)遞增,在[1,2]上單調(diào)遞減.
(1)求實數(shù)a的值;
(2)設g(x)=bx2-1,若關(guān)于x的方程f(x)=g(x)的解集中含有3個元素,求實數(shù)b的取值范圍.

查看答案和解析>>

設函數(shù)f(x)=
1
4
x4+bx2+cx+d,當x=t1時,f(x)有極小值.
(1)若b=-6時,函數(shù)f(x)有極大值,求實數(shù)c的取值范圍;
(2)在(1)的條件下,若存在實數(shù)c,使函數(shù)f(x)在閉區(qū)間[m-2,m+2]上單調(diào)遞增,求m的取值范圍;
(3)若函數(shù)f(x)只有一個極值點,且存在t2∈(t1,t1+1),使f′(t2)=0,證明:函數(shù)g(x)=f(x)-
1
2
x2+t1x在區(qū)間(t1,t2)內(nèi)最多有一個零點.

查看答案和解析>>

設函數(shù)f(x)=alnx,g(x)=
1
2
x2

(1)記h(x)=f(x)-g(x),若a=4,求h(x)的單調(diào)遞增區(qū)間;
(2)記g'(x)為g(x)的導函數(shù),若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求實數(shù)a的取值范圍;
(3)若在[1,e]上存在一點x0,使得f(x0)-f′(x0)>g′(x0)+
1
g′(x0)
成立,求a的取值范圍.

查看答案和解析>>

設函數(shù)f(x)=alnx,g(x)=
12
x2
(1)記h(x)=f(x)-g(x),若a=4,求h(x)的單調(diào)遞增區(qū)間;
(2)記g'(x)為g(x)的導函數(shù),若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求實數(shù)a的取值范圍;
(3)若a=1,對任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.

查看答案和解析>>

一、選擇題:(每小題5分,共60分)

   A C C D D      A A B B C     C D

注:選擇題第⑺題選自課本43頁第6題.

二、填空題:(每小題4分,共16分)

(13) ;     (14) ;       (15) ;       (16) 6.

三、解答題:(本大題共6小題,共74分)

(17) 解:由對數(shù)函數(shù)的定義域知.                 ………………2分

解這個分式不等式,得.                          ………………4分

故函數(shù)的定義域為.                           ………………5分

,                  ………………8分

  因為,所以由對數(shù)函數(shù)的單調(diào)性知.          ………………9分

  又由)知,解這個分式不等式,得.  ………………11分

  故對于,當,                     ………………12分

(18) 解:(Ⅰ)由題意,=1又a>0,所以a=1.………………4分

      (Ⅱ),                 ………………6分

時,,無遞增區(qū)間;       ………………8分

x<1時,,它的遞增區(qū)間是.……11分

     綜上知:的單調(diào)遞增區(qū)間是.        ……………12分

(19)證明:(Ⅰ) 函數(shù)在上的單調(diào)增區(qū)間為

(證明方法可用定義法或?qū)?shù)法)                     ……………8分

  (Ⅱ) ,所以,解得.      ……………12分

(20) 解:(Ⅰ)設投資為萬元,產(chǎn)品的利潤為萬元,產(chǎn)品的利潤為萬元.由題意設

由圖可知,.                           ………………2分

.                               ………………4分

從而,.             ………………5分(Ⅱ)設產(chǎn)品投入萬元,則產(chǎn)品投入萬元,設企業(yè)利潤為萬元.

,          ………………7分

,則

時,,此時.          ………………11分

答:當產(chǎn)品投入6萬元,則產(chǎn)品投入4萬元時,該企業(yè)獲得最大利潤,利潤為2.8萬元.                                                      ………………12分

(21)解:(Ⅰ) ……1分

       根據(jù)題意,                                                       …………4分

       解得.                                                                   …………6分

(Ⅱ)因為 …………7分

   (i)時,函數(shù)無最大值,

           不合題意,舍去.                                                                       …………9分

   (ii)時,根據(jù)題意得

          

           解之得                                                                     …………11分

        為正整數(shù),   =3或4.                                                      …………12分

(22) 解:,

(Ⅰ)當時,                    ………………2分

為其不動點,即

的不動點是.                   ……………4分

(Ⅱ)由得:.  由已知,此方程有相異二實根,

恒成立,即對任意恒成立.

          ………………8分(Ⅲ)設

直線是線段AB的垂直平分線,   ∴    …………10分

記AB的中點由(Ⅱ)知    

        ……………………12分

化簡得:

(當時,等號成立).

                                     ……………………14分

 


同步練習冊答案