為的對(duì)稱軸.--14分 查看更多

 

題目列表(包括答案和解析)

(本題滿分14分)

橢圓G:的兩個(gè)焦點(diǎn)為F1F2,短軸兩端點(diǎn)B1、B2,已知

F1、F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為

  (1)求此時(shí)橢圓G的方程;

  (2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由.

查看答案和解析>>

(本題滿分14分)

已知函數(shù)與函數(shù)的圖像關(guān)于直線對(duì)稱.

(1)試用含的代數(shù)式表示函數(shù)的解析式,并指出它的定義域;

(2)數(shù)列中,,當(dāng)時(shí),.?dāng)?shù)列中,.點(diǎn)在函數(shù)的圖像上,求的值;

(3)在(2)的條件下,過點(diǎn)作傾斜角為的直線,則在y軸上的截距為,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

(本題滿分14分

已知橢圓的離心率為,以原點(diǎn)為圓心,

橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

⑴求橢圓C的方程;

⑵設(shè)、是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓

于另一點(diǎn),求直線的斜率的取值范圍;

⑶在⑵的條件下,證明直線軸相交于定點(diǎn).

 

查看答案和解析>>

(本題滿分14分
已知橢圓的離心率為,以原點(diǎn)為圓心,
橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設(shè)、是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓
于另一點(diǎn),求直線的斜率的取值范圍;
⑶在⑵的條件下,證明直線軸相交于定點(diǎn).

查看答案和解析>>

(本題滿分14分)函數(shù),,其中a為常數(shù),且函數(shù)的圖像在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行.

(Ⅰ)求此平行線的距離;

(Ⅱ)若存在x使不等式成立,求實(shí)數(shù)m的取值范圍;

(Ⅲ)對(duì)于函數(shù)公共定義域中的任意實(shí)數(shù),我們把的值稱為兩函數(shù)在處的偏差.求證:函數(shù)在其公共定義域內(nèi)的所有偏差都大于2.

查看答案和解析>>


同步練習(xí)冊(cè)答案