題目列表(包括答案和解析)
已知,函數(shù)
(1)當時,求函數(shù)在點(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。
【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時, 又 所以函數(shù)在點(1,)的切線方程為;(2)中令 有
對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時, 又
∴ 函數(shù)在點(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當即時
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當即時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。
綜上所述 時,極大值為,無極小值
時 極大值是,極小值是 ----------8分
(Ⅲ)設,
對求導,得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實數(shù)的取值范圍是(,)
n2+n |
(k+1)2+(k+1) |
k2+3k+2 |
k2+4k+4 |
n(n+1) |
2 |
n(n+1)(2n+1) |
6 |
證明:(1)當n=1時,顯然命題是正確的;(2)假設n=k時有<k+1,那么當n=k+1時,=(k+1)+1,所以當n=k+1時命題是正確的,由(1)(2)可知對于n∈N,命題都是正確的.以上證法是錯誤的,錯誤在于( )
A.當n=1時,驗證過程不具體
B.歸納假設的寫法不正確
C.從k到k+1的推理不嚴密
D.從k到k+1的推理過程沒有使用歸納假設
集合A={x│x 2-2x≤0,x∈R}= A={x│0≤x ≤2,x∈R},所以A∩Z={0,1,2},共有3個元素。
方程的解為_____________.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com