題目列表(包括答案和解析)
已知函數(shù)
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)a=2時(shí),求函數(shù)f(x)在區(qū)間[1,e]上的最值.
已知函數(shù).
(1)討論在區(qū)間上的單調(diào)性,并證明你的結(jié)論;
(2)當(dāng)時(shí),求的最大值和最小值.
已知函數(shù):,(a∈R).
(Ⅰ)當(dāng)時(shí),討論f(x)的單調(diào)性;
(Ⅱ)設(shè)g(x)=x2-2bx+4,當(dāng)時(shí),若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)b的取值范圍.
(Ⅲ)若f(x)在區(qū)間(a,a+1)上不具有單調(diào)性,求正實(shí)數(shù)a的取值范圍.
(本題10分) 已知函數(shù).
(1)討論在區(qū)間上的單調(diào)性,并證明你的結(jié)論;
(2)當(dāng)時(shí),求的最大值和最小值.
一、填空題:
1. 2. 3. 4.12 5. 6.11 7. 8.2009 9.4個(gè) 10.①②
11.解: 。因?yàn)椤鰽BC的面積為1, ,所以,△ABE的面積為,因?yàn)镈是AB的中點(diǎn),所以, △BDE的面積為,因?yàn)?sub>,所以△BDF的面積為,當(dāng)且僅當(dāng)時(shí),取得最大值。
二、選擇題:
12.B 13.C 14.D 15.D
三、解答題:
16.解:(Ⅰ)因?yàn)?sub>點(diǎn)的坐標(biāo)為,根據(jù)三角函數(shù)定義可知,,, 2分
所以 4分
(Ⅱ)因?yàn)槿切?sub>為正三角形,所以,,, 5分
所以
8分
所以
。 11分
17.解:方法一:(I)證明:連結(jié)OC,因?yàn)?sub>所以
又所以, 2分
在中,由已知可得 而
所以所以即,
而 所以平面。 4分
(II)解:取AC的中點(diǎn)M,連結(jié)OM、ME、OE,由E為BC的中點(diǎn)知
所以直線OE與EM所成的銳角就是異面直線AB與CD所成的角, 5分
在中,因?yàn)?sub>是直角斜邊AC上的中線,所以所以所以異面直線AB與CD所成角的大小為。 8分
(III)解:設(shè)點(diǎn)E到平面ACD的距離為,因?yàn)?sub>
9分
在中, 所以
而所以,
所以點(diǎn)E到平面ACD的距離為。 12分
方法二:(I)同方法一。
(II)解:以O(shè)為原點(diǎn),如圖建立直角坐標(biāo)系,則 ,設(shè)的夾角為,則所以異面直線AB與CD所成角的大小為。
(III)解:設(shè)平面ACD的法向量為則
令得是平面ACD的一個(gè)法向量。又 所以點(diǎn)E到平面ACD的距離 。
18.解:(Ⅰ)由年銷售量為件,按利潤(rùn)的計(jì)算公式,有生產(chǎn)A、B兩產(chǎn)品的年利潤(rùn)分別為:
且 2分
所以 5分
(Ⅱ)因?yàn)?sub>所以為增函數(shù),
,所以時(shí),生產(chǎn)A產(chǎn)品有最大利潤(rùn)為(萬(wàn)美元) 7分
又,所以時(shí),生產(chǎn)B產(chǎn)品
有最大利潤(rùn)為460(萬(wàn)美元) 9分
現(xiàn)在我們研究生產(chǎn)哪種產(chǎn)品年利潤(rùn)最大,為此,我們作差比較:
11分
所以:當(dāng)時(shí),投資生產(chǎn)A產(chǎn)品200件可獲得最大年利潤(rùn);
當(dāng)時(shí),生產(chǎn)A產(chǎn)品與生產(chǎn)B產(chǎn)品均可獲得最大年利潤(rùn);
當(dāng)時(shí),投資生產(chǎn)B產(chǎn)品100件可獲得最大年利潤(rùn)。12分
19.解:(1)當(dāng)時(shí), ,成立,所以是奇函數(shù);
3分
當(dāng)時(shí),,這時(shí)所以是非奇非偶函數(shù); 6分
(2)當(dāng)時(shí),設(shè)且,則
9分
當(dāng)時(shí),因?yàn)?sub>且,所以
所以,
,所以是區(qū)間 的單調(diào)遞減函數(shù)。 12分
同理可得是區(qū)間 的單調(diào)遞增函數(shù)。 14分
20.解:(Ⅰ)由拋物線:知,設(shè),在上,且,所以,得,代入,得,
所以。 4分
在上,由已知橢圓的半焦距,于是
消去并整理得 , 解得(不合題意,舍去).
故橢圓的方程為。 7分
(另法:因?yàn)?sub>在上,
所以,所以,以下略。)
(Ⅱ)由得,所以點(diǎn)O到直線的距離為
,又,
所以,
且。 10分
下面視提出問(wèn)題的質(zhì)量而定:
如問(wèn)題一:當(dāng)面積為時(shí),求直線的方程。() 得2分
問(wèn)題二:當(dāng)面積取最大值時(shí),求直線的方程。() 得4分
21.解:(1)
2
3
35
100
97
94
3
1
4分
(2)由題意知數(shù)列的前34項(xiàng)成首項(xiàng)為100,公差為-3的等差數(shù)列,從第35項(xiàng)開(kāi)始,奇數(shù)項(xiàng)均為3,偶數(shù)項(xiàng)均為1, 6分
從而= 8分
=。 10分
(3)當(dāng)時(shí),因?yàn)?sub>,
所以 12分
當(dāng)時(shí),
因?yàn)?sub>,所以, 14分
當(dāng)時(shí),
所以。 16分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com