5.考慮0<m<5或m>5兩種情況.若0<m<5.則. . 查看更多

 

題目列表(包括答案和解析)

(2012•贛州模擬)某中學(xué)對(duì)某班50名學(xué)生學(xué)習(xí)習(xí)慣和數(shù)學(xué)學(xué)習(xí)成績(jī)進(jìn)行長(zhǎng)期的調(diào)查,學(xué)習(xí)習(xí)慣和數(shù)學(xué)成績(jī)都只分良好和一般兩種情況,得到的統(tǒng)計(jì)數(shù)據(jù)(因某種原因造成數(shù)據(jù)缺省,現(xiàn)將缺省部分?jǐn)?shù)據(jù)用x,y,z,m,n表示)如下表所示:
數(shù)學(xué)成績(jī)良好 數(shù)學(xué)成績(jī)一般 合計(jì)
學(xué)習(xí)習(xí)慣良好 20 x 25
學(xué)習(xí)習(xí)慣一般 y 21 z
合計(jì) 24 m n
(1)在該班任選一名學(xué)習(xí)習(xí)慣良好的學(xué)生,求其數(shù)學(xué)成績(jī)也良好的概率.
(2)已知A是學(xué)習(xí)習(xí)慣良好但數(shù)學(xué)成績(jī)一般的學(xué)生,B是學(xué)習(xí)習(xí)慣一般但數(shù)學(xué)成績(jī)良好的學(xué)生,在學(xué)習(xí)習(xí)慣良好但數(shù)學(xué)成績(jī)一般的學(xué)生和學(xué)習(xí)習(xí)慣一般但數(shù)學(xué)成績(jī)良好的學(xué)生中,各選取一學(xué)生作代表,求A、B至少有一個(gè)被選中的概率.
(3)有多大的把握認(rèn)為該班的學(xué)生的學(xué)習(xí)習(xí)慣與數(shù)學(xué)成績(jī)有關(guān)系?說(shuō)明理由.
參考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
;
臨界值表:
p(Χ2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

某中學(xué)對(duì)某班50名學(xué)生學(xué)習(xí)習(xí)慣和數(shù)學(xué)學(xué)習(xí)成績(jī)進(jìn)行長(zhǎng)期的調(diào)查,學(xué)習(xí)習(xí)慣和數(shù)學(xué)成績(jī)都只分良好和一般兩種情況,得到的統(tǒng)計(jì)數(shù)據(jù)(因某種原因造成數(shù)據(jù)缺省,現(xiàn)將缺省部分?jǐn)?shù)據(jù)用x,y,z,m,n表示)如下表所示:
數(shù)學(xué)成績(jī)良好數(shù)學(xué)成績(jī)一般合計(jì)
學(xué)習(xí)習(xí)慣良好20x25
學(xué)習(xí)習(xí)慣一般y21z
合計(jì)24mn
(1)在該班任選一名學(xué)習(xí)習(xí)慣良好的學(xué)生,求其數(shù)學(xué)成績(jī)也良好的概率.
(2)已知A是學(xué)習(xí)習(xí)慣良好但數(shù)學(xué)成績(jī)一般的學(xué)生,B是學(xué)習(xí)習(xí)慣一般但數(shù)學(xué)成績(jī)良好的學(xué)生,在學(xué)習(xí)習(xí)慣良好但數(shù)學(xué)成績(jī)一般的學(xué)生和學(xué)習(xí)習(xí)慣一般但數(shù)學(xué)成績(jī)良好的學(xué)生中,各選取一學(xué)生作代表,求A、B至少有一個(gè)被選中的概率.
(3)有多大的把握認(rèn)為該班的學(xué)生的學(xué)習(xí)習(xí)慣與數(shù)學(xué)成績(jī)有關(guān)系?說(shuō)明理由.
參考公式:
臨界值表:
p(Χ2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

某中學(xué)對(duì)某班50名學(xué)生學(xué)習(xí)習(xí)慣和數(shù)學(xué)學(xué)習(xí)成績(jī)進(jìn)行長(zhǎng)期的調(diào)查,學(xué)習(xí)習(xí)慣和數(shù)學(xué)成績(jī)都只分良好和一般兩種情況,得到的統(tǒng)計(jì)數(shù)據(jù)(因某種原因造成數(shù)據(jù)缺省,現(xiàn)將缺省部分?jǐn)?shù)據(jù)用x,y,z,m,n表示)如下表所示:
數(shù)學(xué)成績(jī)良好數(shù)學(xué)成績(jī)一般合計(jì)
學(xué)習(xí)習(xí)慣良好20x25
學(xué)習(xí)習(xí)慣一般y21z
合計(jì)24mn
(1)在該班任選一名學(xué)習(xí)習(xí)慣良好的學(xué)生,求其數(shù)學(xué)成績(jī)也良好的概率.
(2)已知A是學(xué)習(xí)習(xí)慣良好但數(shù)學(xué)成績(jī)一般的學(xué)生,B是學(xué)習(xí)習(xí)慣一般但數(shù)學(xué)成績(jī)良好的學(xué)生,在學(xué)習(xí)習(xí)慣良好但數(shù)學(xué)成績(jī)一般的學(xué)生和學(xué)習(xí)習(xí)慣一般但數(shù)學(xué)成績(jī)良好的學(xué)生中,各選取一學(xué)生作代表,求A、B至少有一個(gè)被選中的概率.
(3)有多大的把握認(rèn)為該班的學(xué)生的學(xué)習(xí)習(xí)慣與數(shù)學(xué)成績(jī)有關(guān)系?說(shuō)明理由.
參考公式:數(shù)學(xué)公式;
臨界值表:
p(Χ2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

已知函數(shù),

(1)求函數(shù)的定義域;

(2)求函數(shù)在區(qū)間上的最小值;

(3)已知,命題p:關(guān)于x的不等式對(duì)函數(shù)的定義域上的任意恒成立;命題q:指數(shù)函數(shù)是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

【解析】第一問(wèn)中,利用由 即

第二問(wèn)中,,得:

第三問(wèn)中,由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí);當(dāng)命題p為假,命題q為真時(shí)分為兩種情況討論即可 。

解:(1)由 即

(2),得:

,

(3)由在函數(shù)的定義域上 的任意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。當(dāng)命題p為真時(shí),;而命題q為真時(shí):指數(shù)函數(shù).因?yàn)椤皃或q”為真,“p且q”為假,所以

當(dāng)命題p為真,命題q為假時(shí),

當(dāng)命題p為假,命題q為真時(shí),

所以

 

查看答案和解析>>

一批產(chǎn)品共100件,其中有10件是次品,為了檢驗(yàn)其質(zhì)量,從中以隨機(jī)的方式選取5件,求在抽取的這5件產(chǎn)品中次品數(shù)分布列與期望值,并說(shuō)明5件中有3件以上(包括3件)為次品的概率.(精確到0.001)

分析:根據(jù)題意確定隨機(jī)變量及其取值,對(duì)于次品在3件以上的概率是3,4,5三種情況的和.

查看答案和解析>>


同步練習(xí)冊(cè)答案