令得.切線與直線交點(diǎn)為. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
(1)求函數(shù)f(x)的解析式;
(2)令函數(shù)g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問:過點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
(1)求函數(shù)f(x)的解析式;
(2)令函數(shù)g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問:過點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x3-3a2x+b(a,b∈R)在x=2處的切線方程為y=9x-14.
(1)求函數(shù)f(x)的解析式;
(2)令函數(shù)g(x)=x2-2x+k
①若存在x1,x2∈[0,2],使得f(x1)≥g(x2)能成立,求實(shí)數(shù)k的取值范圍;
②設(shè)函數(shù)y=g(x)的圖象與直線x=2交于點(diǎn)P,試問:過點(diǎn)P是否可作曲線y=f(x)的三條切線?若可以,求出k的取值范圍;若不可以,則說明理由.

查看答案和解析>>

如圖,已知直線)與拋物線和圓都相切,的焦點(diǎn).

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動點(diǎn),以為切點(diǎn)作拋物線的切線,直線軸于點(diǎn),以、為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為,    直線軸交點(diǎn)為,連接交拋物線、兩點(diǎn),求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以

第二問中,由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線

第三問中,設(shè)直線,代入結(jié)合韋達(dá)定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去).     …………………(2分)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)

(Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

的面積范圍是

 

查看答案和解析>>


同步練習(xí)冊答案