(Ⅰ)求函數(shù)的單調(diào)增區(qū)間, 查看更多

 

題目列表(包括答案和解析)

已知.

   (1)求函數(shù)的單調(diào)增區(qū)間;

   (2)若的值

 

查看答案和解析>>

已知.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若的值

查看答案和解析>>

已知

(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)在中,分別是角A,B,C的對邊,,求的面積的最大值.

 

查看答案和解析>>

已知
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)在中,分別是角A,B,C的對邊,,求的面積的最大值.

查看答案和解析>>

已知,設.

   (1)求函數(shù)的單調(diào)增區(qū)間;(2)三角形的三個角所對邊分別是,且滿足,求邊.

查看答案和解析>>

<dd id="xpjwr"><form id="xpjwr"></form></dd><li id="xpjwr"><tr id="xpjwr"></tr></li>
<li id="xpjwr"></li>

2009.4

 

1-10.CDABB   CDBDA

11.       12. 4        13.        14.       15.  

16.   17.

18.解:(Ⅰ)由題意,有,

.…………………………5分

,得

∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

(Ⅱ)由,得

.           ……………………………………………… 10分

,∴.      ……………………………………………… 14分

19.解:(Ⅰ)設數(shù)列的公比為,由,.             …………………………………………………………… 4分

∴數(shù)列的通項公式為.      ………………………………… 6分

(Ⅱ) ∵,    ,      ①

.      ②         

①-②得: …………………12分

             得,                           …………………14分

20.解:(I)取中點,連接.

分別是梯形的中位線

,又

∴面,又

.……………………… 7分

(II)由三視圖知,是等腰直角三角形,

     連接

     在面AC1上的射影就是,∴

     ,

∴當的中點時,與平面所成的角

  是.           ………………………………14分

                                               

21.解:(Ⅰ)由題意:.

為點M的軌跡方程.     ………………………………………… 4分

(Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設,MN方程為 聯(lián)立得:,設6ec8aac122bd4f6e

    ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

       同理RQ的方程為,求得.  ………………………… 9分

.  ……………………………… 13分

當且僅當時取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

22. 解:(Ⅰ),由題意得,

所以                    ………………………………………………… 4分

(Ⅱ)證明:令,,

得:,……………………………………………… 7分

(1)當時,,在,即上單調(diào)遞增,此時.

          …………………………………………………………… 10分

(2)當時,,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時只要或者即可,得,

.                        …………………………………………14分

由 (1) 、(2)得 .

∴綜上所述,對于,使得成立. ………………15分

高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。

 


同步練習冊答案