中的任意常數(shù).是否存在使成立?若 查看更多

 

題目列表(包括答案和解析)

若函數(shù)滿足:“對(duì)于區(qū)間(1,2)上的任意實(shí)數(shù),

|恒成立,”則稱為完美函數(shù). 在下列四個(gè)函數(shù)中,完美函數(shù)是

A.              B.             C.             D.

查看答案和解析>>

若函數(shù)滿足:“對(duì)于區(qū)間(1,2)上的任意實(shí)數(shù)恒成立”,則稱為完美函數(shù).在下列四個(gè)函數(shù)中,完美函數(shù)是

A. B. C. D.

查看答案和解析>>

若函數(shù)滿足:“對(duì)于區(qū)間(1,2)上的任意實(shí)數(shù)恒成立”,則稱為完美函數(shù).在下列四個(gè)函數(shù)中,完美函數(shù)是
A.B.C.D.

查看答案和解析>>

對(duì)于定義在區(qū)間D上的函數(shù)f(x),若存在閉區(qū)間[a,b]⊆D和常數(shù)c,使得對(duì)任意x1∈[a,b],都有f(x1)=c,且對(duì)任意x2∈D,當(dāng)x2∉[a,b]時(shí),f(x2)>c恒成立,則稱函數(shù)f(x)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)f1(x)=|x-1|+|x-2|和f2(x)=x+|x-2|是否為R上的“平底型”函數(shù)?并說明理由;
(Ⅱ)設(shè)f(x)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式|t-k|+|t+k|≥|k|•f(x)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的取值范圍;
(Ⅲ)若函數(shù)g(x)=mx+
x2+2x+n
是區(qū)間[-2,+∞)上的“平底型”函數(shù),求m和n的值.

查看答案和解析>>

對(duì)于如下四個(gè)函數(shù):①f(x)=
1x
,②f(x)=|x|,③f(x)=2,④f(x)=x2
其中滿足性質(zhì):“對(duì)于區(qū)間(1,2)上的任意x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”的函數(shù)為
①③
①③

查看答案和解析>>

數(shù)   學(xué)(理科)    2009.4

一、選擇題:本大題共有10小題,每小題5分,共50分.

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

D

A

B

B

A

C

C

B

B

二、填空題:本大題共有7小題,每小題4分,共28分.

11. 1   12. 110   13. 78   14.  15.  16. 7   17.

三.解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

18.(Ⅰ)解:.……………………… 4分

,解得

所以函數(shù)的單調(diào)遞增區(qū)間為 .…………… 7分

(Ⅱ)解:由,得.故.……………… 10分

于是有 ,或,

.因,故.……………… 14分

19.(Ⅰ)解:恰好摸到兩個(gè)“心”字球的取法共有4種情形:

開心心,心開心,心心開,心心樂.

則恰好摸到2個(gè)“心”字球的概率是

.………………………………………6分

(Ⅱ)解:

,,

.…………………………………………10分

故取球次數(shù)的分布列為

1

2

3

.…………………………………………………14分

20.(Ⅰ)解:因在底面上的射影恰為B點(diǎn),則⊥底面

所以就是與底面所成的角.

,故

與底面所成的角是.……………………………………………3分

如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,則

,

,

與棱BC所成的角是.…………………………………………………7分

(Ⅱ)解:設(shè),則.于是

舍去),

則P為棱的中點(diǎn),其坐標(biāo)為.…………………………………………9分

設(shè)平面的法向量為,則

,故.…………………11分

而平面的法向量是,

故二面角的平面角的余弦值是.………………………………14分

21.(Ⅰ)解:由題意知:,,,解得

故橢圓的方程為.…………………………………………………5分

   (Ⅱ)解:設(shè),

⑴若軸,可設(shè),因,則

,得,即

軸,可設(shè),同理可得.……………………7分

⑵當(dāng)直線的斜率存在且不為0時(shí),設(shè),

,消去得:

.………………………………………9分

,知

,即(記為①).…………11分

,可知直線的方程為

聯(lián)立方程組,得 (記為②).……………………13分

將②代入①,化簡(jiǎn)得

綜合⑴、⑵,可知點(diǎn)的軌跡方程為.………………………15分

22.(Ⅰ)證明:當(dāng)時(shí),.令,則

,遞增;若,遞減,

的極(最)大值點(diǎn).于是

,即.故當(dāng)時(shí),有.………5分

(Ⅱ)解:對(duì)求導(dǎo),得

①若,,則上單調(diào)遞減,故合題意.

②若

則必須,故當(dāng)時(shí),上單調(diào)遞增.

③若的對(duì)稱軸,則必須,

故當(dāng)時(shí),上單調(diào)遞減.

綜合上述,的取值范圍是.………………………………10分

(Ⅲ)解:令.則問題等價(jià)于

        找一個(gè)使成立,故只需滿足函數(shù)的最小值即可.

        因

,

故當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增.

于是,

與上述要求相矛盾,故不存在符合條件的.……………………15分

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

 


同步練習(xí)冊(cè)答案