16.正方體ABCD―A1B1C1D1的棱長為1.E為A1B1的中點(diǎn).則下列五個命題: 查看更多

 

題目列表(包括答案和解析)

已知正方體ABCD-A1B1C1D1 的棱長為1,E為棱AA1的中點(diǎn),一直線過E點(diǎn)與異面直線BC,C1D1分別相交于M,N兩點(diǎn),則線段MN的長等于
3
3

查看答案和解析>>

(2013•湖州二模)正方體ABCD-A1B1C1D1的棱長為2,MN是它的內(nèi)切球的一條弦(把球面上任意兩點(diǎn)之間的線段稱為球的弦),P為正方體表面上的動點(diǎn),當(dāng)弦MN最長時.
PM
PN
的最大值為
2
2

查看答案和解析>>

如圖,正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)M在棱AB上,且AM=
13
,點(diǎn)P是平面ABCD上的動點(diǎn),且動點(diǎn)P到直線A1D1的距離與點(diǎn)P到點(diǎn)M的距離的平方差為1,那么動點(diǎn)P的軌跡可能是以下
曲線.(填寫序號)①直線;②圓;③橢圓;④雙曲線;⑤拋物線.

查看答案和解析>>

如圖,正方體ABCD-A1B1C1D1的棱長為2,E為棱DD1的中點(diǎn).
(Ⅰ)判斷BD1和過A,C,E三點(diǎn)的平面的位置關(guān)系,并證明你的結(jié)論;
(II)求△ACE的面積.

查看答案和解析>>

如圖,正方體ABCD-A1B1C1D1的棱長為3,點(diǎn)M在AB上,且AM=
13
AB
,點(diǎn)P在平面ABCD上,且動點(diǎn)P到直線A1D1的距離與P到點(diǎn)M的距離相等,在平面直角坐標(biāo)系xAy中,動點(diǎn)P的軌跡方程是
y2=2x+8
y2=2x+8

查看答案和解析>>

 

一.選擇

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

B

A

C

A

D

B

C

B

A

B

二.填空

13.      14. 0      15.100     16.  ②③④

三。解答題

17.(滿分10分)

(1)    ,∴,∴

    (5分)

(2)

      ,∴f(x)的值域?yàn)?sub>           (10分)

18.解:(1)拿每個球的概率均為,兩球標(biāo)號的和是3的倍數(shù)有下列4種情況:

(1,2),(1,5),(2,4),(3,6)每種情況的概率為:

所以所求概率為:   (6分)

(2)設(shè)拿出球的號碼是3的倍數(shù)的為事件A,則,,拿4次至少得2分包括2分和4分兩種情況。

,      (12分)

 

19 (滿分12分)

解法一:(Ⅰ)取BC中點(diǎn)O,連結(jié)AO.

為正三角形,.……3分

 連結(jié),在正方形中,分別為的中點(diǎn),

由正方形性質(zhì)知,.………5分

又在正方形中,,

平面.……6分

(Ⅱ)設(shè)AB1與A1B交于點(diǎn),在平面1BD中,

,連結(jié),由(Ⅰ)得

為二面角的平面角.………9分

中,由等面積法可求得,………10分

所以二面角的大小為.……12分

解法二:(Ⅰ)取中點(diǎn),連結(jié).取中點(diǎn),以為原點(diǎn),如圖建立空間直角坐標(biāo)系,則

……3分

平面.………6分

(Ⅱ)設(shè)平面的法向量為

為平面的一個法向量.……9分

由(Ⅰ)為平面的法向量.……10分

所以二面角的大小為.……12分

20.(滿分12分)解:(I),

      ①                   …2分

,

,      ②                                      …4分

            ③                                     … 6分

聯(lián)立方程①②③,解得                         … 7分

   (II)

                             … 9分

x

(-∞,-3)

-3

(-3,1)

1

(1,+∞)

f′(x)

+

0

0

+

f(x)

極大

極小

                                             

    故h(x)的單調(diào)增區(qū)間為(-∞,-3),(1,+∞),單調(diào)減區(qū)間為(-3,1)

 

21.(滿分12分)

解:(1)∵,∴.

).

).

).

).                    …3分

數(shù)列等比,公比,首項

,且,∴.

.  

.                                …6分

(2)

.

,        ①

∴2.       ②

①-②得 -,

           

            ,                                   …9分

.                                               …12分

22.(滿分12分)

解:⑴設(shè)Q(x0,0),由F(-c,0)                              

A(0,b)知

                                       …2分

設(shè),得                            …4分

因?yàn)辄c(diǎn)P在橢圓上,所以                             …6分

整理得2b2=3ac,即2(a2-c2)=3ac,,故橢圓的離心率e=      …8分

⑵由⑴知,

于是F(-a,0), Q

△AQF的外接圓圓心為(a,0),半徑r=|FQ|=a                        …10分

所以,解得a=2,∴c=1,b=,所求橢圓方程為  …12分

 

 

 

 

 

 

 


同步練習(xí)冊答案