C.當(dāng)時.在x軸上 D.當(dāng)時.在y軸上 查看更多

 

題目列表(包括答案和解析)

(2012•汕頭二模)已知平面內(nèi)一動點 P到定點F(0,
1
2
)
的距離等于它到定直線y=-
1
2
的距離,又已知點 O(0,0),M(0,1).
(1)求動點 P的軌跡C的方程;
(2)當(dāng)點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,以 M P為直徑作圓,求該圓截直線y=
1
2
所得的弦長;
(3)當(dāng)點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,過點 P作x軸的垂線交x軸于點 A,過點 P作(1)中的軌跡C的切線l交x軸于點 B,問:是否總有 P B平分∠A PF?如果有,請給予證明;如果沒有,請舉出反例.

查看答案和解析>>

精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,△AiBiAi+1(i=1,2,…,n,…)為正三角形,A1(-
1
4
,0),|AiAi+1|=2i-1(i=1,2,3,…,n,…)

(1)求證:點B1,B2,…,Bn,…在同一條拋物線上,并求該拋物線C的方程;
(2)設(shè)直線l過坐標(biāo)原點O,點B1關(guān)于l的對稱點B′在y軸上,求直線l的方程;
(3)直線m過(1)中拋物線C的焦點F并交C于M、N,若
MF
FN
(λ>0)
,拋物線C的準(zhǔn)線n與x軸交于E,求證:
EF
EM
EN
的夾角為定值.

查看答案和解析>>

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

已知F是橢圓D:
x2
2
+y2=1
的右焦點,過點E(2,0)且斜率為正數(shù)的直線l與D交于A、B兩點,C是點A關(guān)于x軸的對稱點.
(Ⅰ)證明:點F在直線BC上;
(Ⅱ)若
EB
EC
=1
,求△ABC外接圓的方程.

查看答案和解析>>

已知中心在原點O,焦點在x軸上的橢圓E過點(0,1),離心率為
2
2

(I)求橢圓E的方程;
(II)若直線l過橢圓E的左焦點F,且與橢圓E交于A、B兩點,點A關(guān)于x軸的對稱點為C,直線BC與x軸交于點M,當(dāng)△MAF的面積為
1
2
,求△MAC的內(nèi)切圓方程.

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本題滿分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

,.

18.(本題滿分12分)

解:(Ⅰ)記“這批太空種子中的某一粒種子既發(fā)芽又發(fā)生基因突變”為事件,則.    

(Ⅱ)

19.(本題滿分12分)

  (Ⅰ)∵,∴{}是公差為4的等差數(shù)列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

設(shè)g(n)= ,∵g(n)= n∈N*上是減函數(shù),

g(n)的最大值是g(1)=5,

m>5,存在最小正整數(shù)m=6,使對任意n∈N*bn<成立

20.(本題滿分12分)

解法一:

(I)設(shè)的中點,連結(jié),則四邊形為正方形,

.故,,,,即

學(xué)科網(wǎng)(Zxxk.Com)

平面,                                   

(II)由(I)知平面

平面,,

的中點, 連結(jié),又,則

的中點,連結(jié),則,.

為二面角的平面角.

連結(jié),在中,,

的中點,連結(jié),,

中,,

二面角的余弦值為

解法二:

(I)以為原點,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,.

學(xué)科網(wǎng)(Zxxk.Com),

又因為 所以,平面.

(II)設(shè)為平面的一個法向量.

,

    取,則

,,設(shè)為平面的一個法向量,

,得,則,

設(shè)的夾角為,二面角,顯然為銳角,

,

21.(本題滿分12分)    

解:(Ⅰ) ,上是增函數(shù),在上是減函數(shù),

∴當(dāng)時, 取得極大值.

.

,,

則有 ,

遞增

極大值4

遞減

極小值0

遞增

所以, 當(dāng)時,函數(shù)的極大值為4;極小值為0; 單調(diào)遞增區(qū)間為.

(Ⅱ) 由(Ⅰ)知, ,的兩個根分別為. ∵上是減函數(shù),∴,即,

.

22.(本題滿分12分)

解:(I)依題意,可知,

 ,解得

∴橢圓的方程為

(II)直線與⊙相切,則,即,

,得,

∵直線與橢圓交于不同的兩點設(shè)

,

,

       ∴

設(shè),則

上單調(diào)遞增          ∴.

 

 

 


同步練習(xí)冊答案