若存在.試確定點(diǎn)的位置,若不存在.請(qǐng)說(shuō)明理由. 查看更多

 

題目列表(包括答案和解析)

如圖, 是邊長(zhǎng)為的正方形,平面,,與平面所成角為.

(Ⅰ)求證:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說(shuō)明理由。

 

查看答案和解析>>

如圖,四棱錐的底面是直角梯形,,,平面,,

(1)求直線與平面所成角的正弦值;

(2)在線段上是否存在一點(diǎn),使得異面直線所成角余  弦值等?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

 

 

 

查看答案和解析>>

如圖,已知三棱柱的側(cè)棱與底面垂直,,,分別是的中點(diǎn),點(diǎn)在直線上,且

(Ⅰ)證明:無(wú)論取何值,總有;

(Ⅱ)當(dāng)取何值時(shí),直線與平面所成的角最大?并求該角取最大值時(shí)的正切值;

(Ⅲ)是否存在點(diǎn),使得平面與平面所成的二面角為30º,若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

 如圖,在正三棱柱中,已知

(1)求直線所成角的正弦值;

(2)若的中點(diǎn),問(wèn)在棱上是否存在點(diǎn)使,若存在,試確定點(diǎn)的位置,若不存在,說(shuō)明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

如圖,四棱錐中,底面是平行四邊形,

底面

(Ⅰ)求證:;(Ⅱ)若,求二面角的余弦值;

(Ⅲ)當(dāng)時(shí),在線段上是否存在一點(diǎn)使二面角,若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由。

 

 

 

查看答案和解析>>

 

一、

        20080506

        題號(hào)

        1

        2

        3

        4

        5

        6

        7

        8

        9

        10

        11

        12

        選項(xiàng)

        A

        D

        C

        A

        A

        C

        B

        B

        C

        D

        C

        B

        二、填空題:

        13.-1    14.5   15.    16.③④      

        三、解答題:

        17.解:(Ⅰ) =……1分

        =……2分

          ……3分

         

        ……4分

          .……6分

        (Ⅱ)在中,,

        ……7分

        由正弦定理知:……8分

        =.    ……10分

        18.解:(Ⅰ)選取的5只恰好組成完整“奧運(yùn)吉祥物”的概率

        6ec8aac122bd4f6e                                     ………………4分

        (Ⅱ)6ec8aac122bd4f6e                              …………………5分            6ec8aac122bd4f6e

        6ec8aac122bd4f6e                                      …………9分

        ξ的分布列為:

        ξ

        10

        8

        6

        4

        P

        3/28

        31/56

        9/28

        1/56

        6ec8aac122bd4f6e                                …………12分

        19. 解法一:

           (1)設(shè)于點(diǎn),∵,∴平面. 作,連結(jié),則,是二面角的平面角.…3分

         由已知得,,

        ,,二面角的大小為.…6分

           (2)當(dāng)中點(diǎn)時(shí),有平面.

        證明:取的中點(diǎn)連結(jié)、,則,

        ,故平面即平面.

        ,∴,又平面,

        .…………………………………………12分

        解法二:以D為原點(diǎn),以DA、DC、DP為x軸、y軸、z軸建立空間直角坐標(biāo)系,則

        ,,.…………2分

           (1),,

        ,設(shè)平面的一個(gè)法向量

        ,則.

        設(shè)平面的一個(gè)法向量為,則.

        ,∴二面角的大小為. …………6分

           (2)令

         

        由已知,,要使平面,只須,即則有

        ,得,當(dāng)中點(diǎn)時(shí),有平面.…12分

        20解:(I)f(x)定義域?yàn)?一1,+∞),                        …………………2分

            由得x<一1或x>1/a,由得一1<x<1/a,

             f(x)的單調(diào)增區(qū)間為(1/a,+∞),單調(diào)減區(qū)間為(一1,1/a)…………………6分

        (Ⅱ)由(I)可知:

            ①當(dāng)0<a≤1/2時(shí),,f(x)在[1,2]上為減函數(shù),

            ………………………………8分

            ②當(dāng)1/2<a<1時(shí),f(x)在[1,1/a]上為減函數(shù),在(1/a,2]上為增函數(shù),

            …………………………………10分

            ③當(dāng)a≥1時(shí),f(x)在[1,2]上為增函數(shù),

            …………………………………12分

        21.解:(1),設(shè)動(dòng)點(diǎn)P的坐標(biāo)為,所以

        所以

        由條件,得,又因?yàn)槭堑缺龋?/p>

        所以,所以,所求動(dòng)點(diǎn)的軌跡方程 ……………………6分

           (2)設(shè)直線l的方程為

        聯(lián)立方程組得,

        , …………………………………………8分

        , ………………………………………………10分

        直線RQ的方程為

          …………………………………………………………………12分

        22. 解:(Ⅰ)由題意,                -----------------------------------------------------2分

        ,

                兩式相減得.                --------------------3分

                當(dāng)時(shí),,

        .            --------------------------------------------------4分

        (Ⅱ)∵,

        ,

               ,

          ,

          ………

         

        以上各式相加得

        .

          ,∴.      ---------------------------6分

        .     -------------------------------------------------7分

        ,

        .

        .

                 =.

        .  -------------------------------------------------------------9分

        (3)=

                            =4+

           =

                            .  -------------------------------------------10分

                ,  ∴ 需證明,用數(shù)學(xué)歸納法證明如下:

                ①當(dāng)時(shí),成立.

                ②假設(shè)時(shí),命題成立即,

                那么,當(dāng)時(shí),成立.

                由①、②可得,對(duì)于都有成立.

               ∴.       ∴.--------------------12分

         


        同步練習(xí)冊(cè)答案