方法二:設(shè)A.B.M點(diǎn)的坐標(biāo)分別為又易知F點(diǎn)的坐標(biāo)為(2.0). 查看更多

 

題目列表(包括答案和解析)

(2007•浦東新區(qū)二模)已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(1)求拋物線C的方程.
(2)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),M是弦AB的中點(diǎn),過(guò)M作平行于x軸的直線交拋物線C于點(diǎn)D,得到△ABD;再分別過(guò)弦AD、BD的中點(diǎn)作平行于x軸的直線依次交拋物線C于點(diǎn)E,F(xiàn),得到△ADE和△BDF;按此方法繼續(xù)下去.
解決下列問(wèn)題:
①求證:a2=
16(1-kb)k2
;
②計(jì)算△ABD的面積S△ABD;
③根據(jù)△ABD的面積S△ABD的計(jì)算結(jié)果,寫(xiě)出△ADE,△BDF的面積;請(qǐng)?jiān)O(shè)計(jì)一種求拋物線C與線段AB所圍成封閉圖形面積的方法,并求出此封閉圖形的面積.

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

(2009•崇明縣二模)設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)頂點(diǎn)坐標(biāo)為A(0,-
2
),且其右焦點(diǎn)到直線y-x-2
2
=0
的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點(diǎn),弦AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)M,則稱弦AB是點(diǎn)M的一條“相關(guān)弦”,如果點(diǎn)M的坐標(biāo)為M(
1
2
,0
),求證點(diǎn)M的所有“相關(guān)弦”的中點(diǎn)在同一條直線上;
(3)根據(jù)解決問(wèn)題(2)的經(jīng)驗(yàn)與體會(huì),請(qǐng)運(yùn)用類比、推廣等思想方法,提出一個(gè)與“相關(guān)弦”有關(guān)的具有研究?jī)r(jià)值的結(jié)論,并加以解決.(本小題將根據(jù)所提出問(wèn)題的層次性給予不同的分值)

查看答案和解析>>


同步練習(xí)冊(cè)答案