解得.適合. ----.. 5分 查看更多

 

題目列表(包括答案和解析)

已知向量),向量,,

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到,

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

在△ABC中,a、b、c分別是角A、B、C的對邊,cosB=.

⑴ 若cosA=-,求cosC的值;  ⑵ 若AC=,BC=5,求△ABC的面積.

【解析】第一問中sinB=, sinA=

cosC=cos(180°-A-B)=-cos(A+B)                =sinA.sinB-cosA·cosB

×-(-

第二問中,由-2AB×BC×cosB得 10=+25-8AB

解得AB=5或AB=3綜合得△ABC的面積為

解:⑴ sinB=, sinA=,………………2分

∴cosC=cos(180°-A-B)=-cos(A+B)                  ……………………3分

=sinA.sinB-cosA·cosB                            ……………………4分

×-(-                   ……………………6分

⑵ 由-2AB×BC×cosB得 10=+25-8AB   ………………7分

解得AB=5或AB=3,                               ……………………9分

若AB=5,則S△ABCAB×BC×sinB=×5×5×    ………………10分

若AB=3,則S△ABCAB×BC×sinB=×5×3×……………………11分

綜合得△ABC的面積為

 

查看答案和解析>>

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于兩點。

(I)求曲線的方程;

(II)試證明:在軸上存在定點,使得總能被軸平分

【解析】第一問中設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為

第二問中,設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個公共點.

然后設(shè)點,的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點,則點在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點.(也可根據(jù)點M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點,的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,,

,即只要  ………………12分  

當(dāng)時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點,使得總能被軸平分

 

查看答案和解析>>

一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當(dāng)日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區(qū)域供水千噸.

(1)多少小時后,蓄水池存水量最少?

(2)當(dāng)蓄水池存水量少于3千噸時,供水就會出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時間有多長?

【解析】第一問中(1)設(shè)小時后,蓄水池有水千噸.依題意,當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸

第二問依題意,   解得:

解:(1)設(shè)小時后,蓄水池有水千噸.………………………………………1分

依題意,…………………………………………4分

當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸. ………2分

(2)依題意,   ………………………………………………3分

解得:.  …………………………………………………………………3分

所以,當(dāng)天有8小時會出現(xiàn)供水緊張的情況

 

查看答案和解析>>

(2009•寧波模擬)2009年的復(fù)旦大學(xué)自主招生測驗卷為200道單選題,總分1000分.每題含有4個選擇支,選對得5分,選錯扣2分,不選得0分.某考生遇到5道完全不會解的題,經(jīng)過思考,他放棄了這5題,沒有猜答案.請你用數(shù)學(xué)知識來說明他放棄這5題的理由:
若他不放棄這5道題,則這5道題得分的期望為:Eξ=5×[
1
4
×5+
3
4
×(-2)
]=-
5
4
<0
若他不放棄這5道題,則這5道題得分的期望為:Eξ=5×[
1
4
×5+
3
4
×(-2)
]=-
5
4
<0

查看答案和解析>>


同步練習(xí)冊答案