當(dāng)直線軸時(shí).直線的方程是:.根據(jù)對(duì)稱性可知 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
1
4
x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
(1)過(guò)點(diǎn),A(p0
1
4
p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=
|p0|
2
;
(2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過(guò)M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,
1
4
p
2
1
),E′(p2,
1
4
p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
|p1|
2

(3)設(shè)D={ (x,y)|y≤x-1,y≥
1
4
(x+1)2-
5
4
}.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

查看答案和解析>>

在平面直角坐標(biāo)系xoy上,給定拋物線L:y=數(shù)學(xué)公式x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
(1)過(guò)點(diǎn),A(p0,數(shù)學(xué)公式p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=數(shù)學(xué)公式
(2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過(guò)M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,數(shù)學(xué)公式),E′(p2數(shù)學(xué)公式p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=數(shù)學(xué)公式
(3)設(shè)D={ (x,y)|y≤x-1,y≥數(shù)學(xué)公式(x+1)2-數(shù)學(xué)公式}.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

查看答案和解析>>

在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
1
4
x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
(1)過(guò)點(diǎn),A(p0,
1
4
p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=
|p0|
2
;
(2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過(guò)M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,
1
4
p21
),E′(p2,
1
4
p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
|p1|
2

(3)設(shè)D={ (x,y)|y≤x-1,y≥
1
4
(x+1)2-
5
4
}.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

查看答案和解析>>

在平面直角坐標(biāo)系xoy上,給定拋物線L:y=x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
(1)過(guò)點(diǎn),A(pp2)(p≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=;
(2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過(guò)M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1),E′(p2p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
(3)設(shè)D={ (x,y)|y≤x-1,y≥(x+1)2-}.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

查看答案和解析>>

在平面直角坐標(biāo)系xoy上,給定拋物線L:y=x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
(1)過(guò)點(diǎn),A(pp2)(p≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=
(2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過(guò)M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,),E′(p2p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
(3)設(shè)D={ (x,y)|y≤x-1,y≥(x+1)2-}.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

查看答案和解析>>


同步練習(xí)冊(cè)答案