解:(1)設(shè)點.. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=ax+
1x+b
(a,b∈Z)
,曲線y=f(x)在點(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

設(shè)函數(shù)f(x)=ax-
bx
,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

設(shè)函數(shù)f(x)=-4x+b,且不等式|f(x)|<k的解集為{x|-1<x<2}.
(Ⅰ)求b,k的值;
(Ⅱ)證明:函數(shù)φ(x)=
4x
f(x)
的圖象關(guān)于點P(
1
2
,-1)
對稱.

查看答案和解析>>

設(shè)y=f(x)為三次函數(shù),且圖象關(guān)于原點對稱,當x=
12
時,f(x)的極小值為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)證明:當x∈(1,+∞)時,函數(shù)f(x)圖象上任意兩點的連線的斜率恒大于0.

查看答案和解析>>

設(shè)x1、x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個極值點.
(Ⅰ)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(Ⅱ)若|x1|+|x2|=2
2
,求b的最大值;
(Ⅲ)設(shè)函數(shù)g(x)=f'(x)-a(x-x1),x∈(x1,x2),當x2=a時,求證:|g(x)|≤
1
12
a(3a+2)2

查看答案和解析>>


同步練習冊答案