題目列表(包括答案和解析)
已知函數(shù),(),
(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值
(2)當(dāng)時(shí),若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1),
∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線
∴,
∴
(2)令,當(dāng)時(shí),
令,得
時(shí),的情況如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為
當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,
當(dāng)且,即時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為
當(dāng),即a>6時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞贈(zèng),在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244511088175760_ST.files/image040.png">
所以在區(qū)間上的最大值為。
(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時(shí)的值,列表如下:
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
|
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
請觀察表中值隨值變化的特點(diǎn),完成下列問題:
(1) 當(dāng)時(shí),在區(qū)間上遞減,在區(qū)間 上遞增;
所以,= 時(shí), 取到最小值為 ;
(2) 由此可推斷,當(dāng)時(shí),有最 值為 ,此時(shí)= ;
(3) 證明: 函數(shù)在區(qū)間上遞減;
(4) 若方程在內(nèi)有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。
(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時(shí)的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中值隨值變化的特點(diǎn),完成下列問題:
(1) 當(dāng)時(shí),在區(qū)間上遞減,在區(qū)間 上遞增;
所以,= 時(shí), 取到最小值為 ;
(2) 由此可推斷,當(dāng)時(shí),有最 值為 ,此時(shí)= ;
(3) 證明: 函數(shù)在區(qū)間上遞減;
(4) 若方程在內(nèi)有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
x | -1 | -0.72 | -0.44 | -0.16 | 0.12 | 0.4 |
y的近似值 | 4.00 | 1.15 | 0.02 | -0.14 | 0.11 | 0.08 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com