所以在區(qū)間,內(nèi)為減函數(shù).在區(qū)間內(nèi)為增函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值

(2)當(dāng)時(shí),若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

【解析】(1), 

∵曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線

,

(2)令,當(dāng)時(shí),

,得

時(shí),的情況如下:

x

+

0

-

0

+

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為

當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,

當(dāng),即時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

當(dāng),即a>6時(shí),函數(shù)在區(qū)間內(nèi)單調(diào)遞贈(zèng),在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244511088175760_ST.files/image040.png">

所以在區(qū)間上的最大值為。

 

查看答案和解析>>

(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時(shí)的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

請觀察表中值隨值變化的特點(diǎn),完成下列問題:

(1) 當(dāng)時(shí),在區(qū)間上遞減,在區(qū)間       上遞增;

所以,=       時(shí), 取到最小值為         ;

(2) 由此可推斷,當(dāng)時(shí),有最      值為        ,此時(shí)=      ;

(3) 證明: 函數(shù)在區(qū)間上遞減;

(4) 若方程內(nèi)有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時(shí)的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

請觀察表中值隨值變化的特點(diǎn),完成下列問題:

(1) 當(dāng)時(shí),在區(qū)間上遞減,在區(qū)間              上遞增;

所以,=            時(shí), 取到最小值為             ;

(2) 由此可推斷,當(dāng)時(shí),有最      值為        ,此時(shí)=        ;

(3) 證明: 函數(shù)在區(qū)間上遞減;

(4) 若方程內(nèi)有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。

   

查看答案和解析>>

(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時(shí)的值,列表如下:


0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7



8.5
5
4.17
4.05
4.005
4
4.005
4.102
4.24
4.3
5
5.8
7.57

請觀察表中值隨值變化的特點(diǎn),完成下列問題:
(1) 當(dāng)時(shí),在區(qū)間上遞減,在區(qū)間      上遞增;
所以,=      時(shí), 取到最小值為       ;
(2) 由此可推斷,當(dāng)時(shí),有最     值為       ,此時(shí)=    ;
(3) 證明: 函數(shù)在區(qū)間上遞減;
(4) 若方程內(nèi)有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

某研究性學(xué)習(xí)小組研究函數(shù)f(x)=ax3+bx(a≠0,a,b為常數(shù))的 性質(zhì):
(Ⅰ)甲同學(xué)得到如下表所示的部分自變量x及其對應(yīng)函數(shù)值y的近似值(精確到0.01):
x -1 -0.72 -0.44 -0.16 0.12 0.4
y的近似值 4.00 1.15 0.02 -0.14 0.11 0.08
請你根據(jù)上述表格中的數(shù)據(jù)回答下列問題:
(i)函數(shù)f(x)在區(qū)間(0.4,0.44)內(nèi)是否存在零點(diǎn),寫出你的判斷并加以證明;
(ii)證明:函數(shù)f(x)在區(qū)間(-∞,-0.3)上單調(diào)遞減;
(Ⅱ)乙同學(xué)發(fā)現(xiàn)對于函數(shù)f(x)圖象上的兩點(diǎn)A(-1,4),B(t,f(t))(-1<t<2),存在m∈(-1,t),使f'(m)的值恰為直線AB的斜率,請你判斷乙同學(xué)的結(jié)論是否正確?若正確,請給出證明并確定m的個(gè)數(shù),若不正確,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案