(2) 若, 當(dāng)三棱錐的體積最大時(shí), 查看更多

 

題目列表(包括答案和解析)

如圖, 在三棱錐中,

(1)求證:平面平面;

(2)若,當(dāng)三棱錐的體積最大時(shí),求的長.

 

查看答案和解析>>

如圖, 在三棱錐中,

(1)求證:平面平面;
(2)若,當(dāng)三棱錐的體積最大時(shí),求的長.

查看答案和解析>>

如圖, 在三棱錐中,

(1)求證:平面平面;
(2)若,,當(dāng)三棱錐的體積最大時(shí),求的長.

查看答案和解析>>

 

如圖,側(cè)棱垂直底面的三棱柱中,,,是側(cè)棱上的動點(diǎn).

    

(Ⅰ)當(dāng)時(shí),求證:

(Ⅱ)試求三棱錐的體積取得最大值時(shí)的值;

(Ⅲ)若二面角的平面角的余弦值為,試求實(shí)數(shù)的值.

 

查看答案和解析>>

如圖,在三棱錐P-ABC中,∠PAB=∠PAC=∠ACB=90°.
(Ⅰ)求證:平面PBC⊥平面PAC;
(Ⅱ)若PA=1,AB=2,當(dāng)三棱錐P-ABC的體積最大時(shí),在線段AC上是否存在一點(diǎn)D,使得直線BD與平面PBC所成角為30°?若存在,求出CD的長;若不存在,說明理由.(參考公式:棱錐的體積公式V=
13
Sh
,其中S表示底面積,h表示棱錐的高)

查看答案和解析>>

說明:1.參考答案與評分標(biāo)準(zhǔn)指出了每道題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識點(diǎn)和能力比照評分標(biāo)準(zhǔn)給以相應(yīng)的分?jǐn)?shù).

      2.對解答題中的計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分?jǐn)?shù)不得超過該部分正確解答應(yīng)得分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

      3.解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

4.只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

 

一、選擇題:本大題主要考查基本知識和基本運(yùn)算.共8小題,每小題5分,滿分40分.

 

題號

1

2

3

4

5

6

7

8

答案

A

B

C

D

A

C

B

D

 

二、填空題:本大題主要考查基本知識和基本運(yùn)算.本大題共7小題,每小題5分,滿分30分.其中13~15是選做題,考生只能選做兩題. 第12題第一個(gè)空2分,第二個(gè)空3分.

9.         10.    11.       12.-1;4     13.

14.1         15.   

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力

解: (1)∵, 且,

     ∴ .                                      

     由正弦定理得.                                       

     ∴.                                     

   (2)∵                                        

     ∴.

     ∴ .                                                       

    由余弦定理得,

.     

 

17.(本小題滿分14分)

本小題主要考查概率、隨機(jī)變量的分布列及其數(shù)學(xué)期望等基礎(chǔ)知識,考查運(yùn)算求解能力

解:(1)記“甲射擊一次,擊中目標(biāo)”為事件,“乙射擊一次,擊中目標(biāo)”為事件,“甲射擊一次,

未擊中目標(biāo)”為事件,“乙射擊一次,未擊中目標(biāo)”為事件,

,.                        

依題意得,                                

        解得.

        故的值為.                                                    

(2)的取值分別為.                                            

,                      

,                     

的分布列為

0

2

4

 

                                                                    

                                    

 

18.(本小題滿分14分)

(本小題主要考查空間中線面的位置關(guān)系、空間的角、幾何體體積等基礎(chǔ)知識,考查空間想象能力、推理論證能力和運(yùn)算求解能力)

 (1) 證明: ∵分別是棱的中點(diǎn),

         ∴是△的中位線.

         ∴.                              

         ∵平面平面

         ∴平面.                                             

         同理可證 平面.       

平面,平面,

∴平面// 平面.                                      

               

(2) 求三棱錐的體積的最大值, 給出如下兩種解法:

解法1: 由已知平面, ,

    ∴.

    ∴三棱錐的體積為

                                                   

                               

                              

                               .                                 

     當(dāng)且僅當(dāng)時(shí)等號成立,取得最大值,其值為, 此時(shí).          

 

     

解法2:設(shè),在Rt△中,.

     

      ∴三棱錐的體積為

                                

                                                         

                                

                                 .   

       ∵,          

     ∴ 當(dāng),即時(shí),取得最大值,其值為,此時(shí).

    求二面角的平面角的余弦值, 給出如下兩種解法:

 解法1:作,垂足為, 連接.

      ∵ 平面,平面平面,

      ∴ 平面.

      ∵ 平面,     

.

      ∵ ,     

平面.

平面,

      ∴.

     ∴ 是二面角的平面角.                              

     在Rt△中,,

     ∴.

在Rt△中,,

.

∴二面角的平面角的余弦值為.                     

解法2:分別以所在直線為軸, 軸, 軸,建立如圖的空間直角坐標(biāo)系,

     則.

     ∴.  

   設(shè)n為平面的法向量,

 

, 則.

為平面的一個(gè)法向量.                           

∵平面的一個(gè)法向量為,

.             

∴二面角的平面角的余弦值為.                        

19.(本小題滿分12分)

(本小題主要考查函數(shù)最值、不等式、導(dǎo)數(shù)及其應(yīng)用等基礎(chǔ)知識,考查分類與整合的數(shù)學(xué)思想方法,以及運(yùn)算求解能力和應(yīng)用意識)

解:(1)生產(chǎn)150件產(chǎn)品,需加工型零件450個(gè),

則完成型零件加工所需時(shí)間N,且.   

     (2)生產(chǎn)150件產(chǎn)品,需加工型零件150個(gè),

 則完成型零件加工所需時(shí)間N,且.

設(shè)完成全部生產(chǎn)任務(wù)所需時(shí)間為小時(shí),則的較大者.

,即,

解得.                                                       

所以,當(dāng)時(shí),;當(dāng)時(shí),.

.                             

當(dāng)時(shí),,故上單調(diào)遞減,

上的最小值為(小時(shí));                  

 當(dāng)時(shí),,故上單調(diào)遞增,

上的最小值為(小時(shí));            

上的最小值為.

.

答:為了在最短時(shí)間內(nèi)完成生產(chǎn)任務(wù),應(yīng)取.                        

 

20.(本小題滿分14分)

(本小題主要考查圓、橢圓、直線等基礎(chǔ)知識和數(shù)學(xué)探究,考查數(shù)形結(jié)合、分類與整合的數(shù)學(xué)思想方法,以及推理論證能力、運(yùn)算求解能力和創(chuàng)新意識)

解:(1)圓, 圓心的坐標(biāo)為,半徑.

,

∴點(diǎn)在圓內(nèi).                                                   

設(shè)動圓的半徑為,圓心為,依題意得,且,

.                                               

∴圓心的軌跡是中心在原點(diǎn),以兩點(diǎn)為焦點(diǎn),長軸長為的橢圓,設(shè)其方程為

,  則.

.

∴所求動圓的圓心的軌跡方程為.                          

 

 (2)由 消去化簡整理得:.

設(shè),則.

 

.  ①                             

消去化簡整理得:.

設(shè),則,

 


同步練習(xí)冊答案