(2)∵.由正弦定理.得.且 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上,且滿足

(Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;

(Ⅱ)過定點(diǎn)D(m,0)(m>0)作直線l交軌跡CA、B兩點(diǎn),ED點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn),求證:∠AED=∠BED;

(Ⅲ)在(Ⅱ)中,是否存在垂直于x軸的直線被以AD為直徑的圓截得的弦長恒為定值?若存在求出的方程;若不存在,請說明理由.

查看答案和解析>>

已知點(diǎn)H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上,且滿足,

(Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;

(Ⅱ)過定點(diǎn)D(m,0)(m>0)作直線l交軌跡CA、B兩點(diǎn),ED點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn),求證:∠AED=∠BED;

(Ⅲ)在(Ⅱ)中,是否存在垂直于x軸的直線被以AD為直徑的圓截得的弦長恒為定值?若存在求出的方程;若不存在,請說明理由.

查看答案和解析>>

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點(diǎn)滿足
PE
=
1
3
PD

(1)證明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在線段BC上是否存在點(diǎn)F,使得PF∥平面EAC?若存在,確定點(diǎn)F的位置,若不存在請說明理由.

查看答案和解析>>

如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O為AC中點(diǎn).
(1)求直線A1C與平面A1AB所成角的正弦值;
(2)在BC1上是否存在一點(diǎn)E,使得OE∥平面A1AB,若不存在,說明理由;若存在,確定點(diǎn)E的位置.精英家教網(wǎng)

查看答案和解析>>

如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O為AC中點(diǎn).
(1)求直線A1C與平面A1AB所成角的正弦值;
(2)在BC1上是否存在一點(diǎn)E,使得OE∥平面A1AB,若不存在,說明理由;若存在,確定點(diǎn)E的位置.

查看答案和解析>>


同步練習(xí)冊答案