解得 則6年后即2008年底起達到富裕. 查看更多

 

題目列表(包括答案和解析)

某地區(qū)對12歲兒童瞬時記憶能力進行調查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學生共有40人,下表為該班學生瞬時記憶能力的調查結果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學生為3人.

     視覺         [來源:]

視覺記憶能力

偏低

中等

偏高

超常

聽覺

記憶

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

由于部分數據丟失,只知道從這40位學生中隨機抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為

(I)試確定的值;

(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生的概率;

(III)從40人中任意抽取3人,設具有聽覺記憶能力或視覺記憶能力偏高或超常的學生人數為,求隨機變量的數學期望

【解析】1)中由表格數據可知,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的學生共有(10+a)人.記“視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分

所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分

(2)中由表格數據可知,具有聽覺記憶能力或視覺記憶能力超常的學生共有8人.

方法1:記“至少有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件B,

則“沒有一位具有聽覺記憶能力或視覺記憶能力超常的學生”為事件

(3)中由于從40位學生中任意抽取3位的結果數為,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學生共24人,從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的結果數為,………………………7分

所以從40位學生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的概率為,k=0,1,2,3

 

查看答案和解析>>

黑板上有一道有正解的解三角形的習題,一位同學不小心把其中一部分擦去了,現在只能看到:在△ABC中,角A、B、C的對邊分別為a、b、c,已知a=2,…,解得b=
6
,根據以上信息,你認為下面哪個選項可以作為這個習題的其余已知條件 (  )
A、A=30°,B=45°
B、c=1,cosC=
1
3
C、B=60°,c=3
D、C=75°,A=45°

查看答案和解析>>

袋子中裝有大小形狀完全相同的m個紅球和n個白球,其中m,n滿足m>n≥2且m+n≤l0(m,n∈N+),若從中取出2個球,取出的2個球是同色的概率等于取出的2個球是異色的概率.

(Ⅰ) 求m,n的值;

(Ⅱ) 從袋子中任取3個球,設取到紅球的個數為,求的分布列與數學期望.

【解析】第一問中利用,解得m=6,n=3.

第二問中,的取值為0,1,2,3. P(=0)= ,     P(=1)=

P(=2)= ,   P(=3)=

得到分布列和期望值

解:(I)據題意得到        解得m=6,n=3.

(II)的取值為0,1,2,3.

P(=0)= ,     P(=1)=

P(=2)= ,   P(=3)=

的分布列為

所以E=2

 

查看答案和解析>>

已知函數。

(1)求函數的最小正周期和最大值;

(2)求函數的增區(qū)間;

(3)函數的圖象可以由函數的圖象經過怎樣的變換得到?

【解析】本試題考查了三角函數的圖像與性質的運用。第一問中,利用可知函數的周期為,最大值為

第二問中,函數的單調區(qū)間與函數的單調區(qū)間相同。故當,解得x的范圍即為所求的區(qū)間。

第三問中,利用圖像將的圖象先向右平移個單位長度,再把橫坐標縮短為原來的 (縱坐標不變),然后把縱坐標伸長為原來的倍(橫坐標不變),再向上平移1個單位即可。

解:(1)函數的最小正周期為,最大值為。

(2)函數的單調區(qū)間與函數的單調區(qū)間相同。

 

所求的增區(qū)間為,

所求的減區(qū)間為,。

(3)將的圖象先向右平移個單位長度,再把橫坐標縮短為原來的 (縱坐標不變),然后把縱坐標伸長為原來的倍(橫坐標不變),再向上平移1個單位即可。

 

查看答案和解析>>

黑板上有一道有正解的解三角形的習題,一位同學不小心把其中一部分擦去了,現在只能看到:在△ABC中,角A、B、C的對邊分別為a、b、c,已知a=2,…,解得b=
6
,根據以上信息,你認為下面哪個選項可以作為這個習題的其余已知條件 (  )
A.A=30°,B=45°B.c=1,cosC=
1
3
C.B=60°,c=3D.C=75°,A=45°

查看答案和解析>>


同步練習冊答案