(2)若點(diǎn)為函數(shù)的圖象上任意一點(diǎn).當(dāng)時(shí).點(diǎn)P處的切線的斜率k≤恒成立.求實(shí)數(shù)a的最小值, 查看更多

 

題目列表(包括答案和解析)

函數(shù)y=f (x )=-x3+ax2+b(a,b∈R ),
(Ⅰ)要使y=f(x)在(0,1)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)當(dāng)a>0時(shí),若函數(shù)滿足y極小值=1,y極大值=,求函數(shù)y=f(x)的解析式;
(Ⅲ)若x∈[0,1]時(shí),y=f(x)圖象上任意一點(diǎn)處的切線傾斜角為θ,求當(dāng)0≤θ≤時(shí)a的取值范圍。

查看答案和解析>>

設(shè)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若當(dāng)時(shí),設(shè)函數(shù)圖象上任意一點(diǎn)處的切線的傾斜角為,求的取值范圍;

(Ⅲ)若關(guān)于的方程在區(qū)間[0,2]上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

設(shè)函數(shù)f(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù),則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對(duì)定義域內(nèi)任意x1、x2、x3,…,xn都有(當(dāng)x1=x2=x3=…=xn時(shí)等號(hào)成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且
④設(shè)A,B,C是一個(gè)三角形的三個(gè)內(nèi)角,則sinA+sinB+sinC的最大值是
其中,正確命題的序號(hào)是    (寫(xiě)出所有你認(rèn)為正確命題的序號(hào)).

查看答案和解析>>

設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)時(shí),設(shè)函數(shù)圖象上任意一點(diǎn)處的切線的傾斜角為,求的取值范圍;
(Ⅲ)若關(guān)于的方程在區(qū)間[0,2]上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

設(shè)函數(shù)f(x)對(duì)其定義域內(nèi)的任意實(shí)數(shù)數(shù)學(xué)公式,則稱函數(shù)f(x)為上凸函數(shù). 若函數(shù)f(x)為上凸函數(shù),則對(duì)定義域內(nèi)任意x1、x2、x3,…,xn都有數(shù)學(xué)公式(當(dāng)x1=x2=x3=…=xn時(shí)等號(hào)成立),稱此不等式為琴生不等式,現(xiàn)有下列命題:
①f(x)=lnx(x>0)是上凸函數(shù);
②二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
③f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且數(shù)學(xué)公式;
④設(shè)A,B,C是一個(gè)三角形的三個(gè)內(nèi)角,則sinA+sinB+sinC的最大值是數(shù)學(xué)公式
其中,正確命題的序號(hào)是________(寫(xiě)出所有你認(rèn)為正確命題的序號(hào)).

查看答案和解析>>


同步練習(xí)冊(cè)答案