圓C:.設(shè)直線PF1的斜率為k. 查看更多

 

題目列表(包括答案和解析)

橢圓C=1(ab>0)的左、右焦點分別是F1F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1,PF2的斜率分別為k1k2.若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

橢圓C1(ab0)的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.

(1)求橢圓C的方程;

(2)P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1,PF2的斜率分別為k1,k2.k≠0,試證明為定值,并求出這個定值.

 

查看答案和解析>>

橢圓C=1(ab>0)的左、右焦點分別是F1F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1PF2的斜率分別為k1,k2.若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

設(shè)橢圓C:
x2
λ+1
+y2=1
(λ>0)的兩焦點是F1,F(xiàn)2,且橢圓上存在點P,使
PF1
PF2
=0

(1)求實數(shù)λ的取值范圍;
(2)若直線l:x-y+2=0與橢圓C存在一公共點M,使得|MF1|+|MF2|取得最小值,求此最小值及此時橢圓的方程.
(3)在條件(2)下的橢圓方程,是否存在斜率為k(k≠0)的直線?,與橢圓交于不同的兩點A、B,滿足
AQ
=
QB
,且使得過點Q,N(0,-1)兩點的直線NQ滿足
NQ
AB
=0?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

設(shè)橢圓C:
x2
λ+1
+y2=1
(λ>0)的兩焦點是F1,F(xiàn)2,且橢圓上存在點P,使
PF1
PF2
=0

(1)求實數(shù)λ的取值范圍;
(2)若直線l:x-y+2=0與橢圓C存在一公共點M,使得|MF1|+|MF2|取得最小值,求此最小值及此時橢圓的方程.
(3)在條件(2)下的橢圓方程,是否存在斜率為k(k≠0)的直線?,與橢圓交于不同的兩點A、B,滿足
AQ
=
QB
,且使得過點Q,N(0,-1)兩點的直線NQ滿足
NQ
AB
=0?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案