(1) 若數(shù)列前三項成等差數(shù)列.求的值, 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}的前n項和為Sn,Sn=2an-3n(n∈N*
(1)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c值;
(2)求數(shù)列{an}的通項公式an
(3)數(shù)列{an}中是否存在三項,它們可以構成等差數(shù)列?若存在,請求出一組適合條件的項;若不存在,請說明理由.

查看答案和解析>>

已知等差數(shù)列{an}的公差為-1,且a2+a7+a12=-6,
(1)求數(shù)列{an}的通項公式an與前n項和Sn;
(2)將數(shù)列{an}的前4項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列{bn}的前3項,記{bn}的前n項和為Tn,若存在m∈N*,使對任意n∈N*總有Sn<Tm+λ恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

數(shù)列{an}的前n項和為Sn(n∈N*),點(an,Sn)在直線y=2x-3n上.
(1)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c的值;
(2)求數(shù)列{an}的通項公式; 
(3)數(shù)列{an}中,是否存在三項,它們可以構成等差數(shù)列?若存在,請求出一組適合條件的項;若不存在,請說明理由.

查看答案和解析>>

數(shù)列{an}的前n項和為Sn(n∈N*),點(an,Sn)在直線y=2x-3n上,
(1)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c的值;
(2)數(shù)列{an}中是否存在三項,它們可以構成等差數(shù)列?若存在,請求出一組適合條件的項;若不存在,請說明理由.
(3)若bn=
1
3
an
+1,請求出一個滿足條件的指數(shù)函數(shù)g(x),使得對于任意的正整數(shù)n恒有
n
k=1
g(k)
(bk+1)(bk+1+1)
1
3
成立,并加以證明.(其中為連加號,如:
n
i-1
an=a1+a2+…+an

查看答案和解析>>

已知等差數(shù)列{an}前三項的和為-3,前三項的積為8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{an}的前n項和Sn的最小值.

查看答案和解析>>

第Ⅰ部分(正卷)

一、填空題:本大題共14小題,每小題5分,計70分。

1、    2、    3、對任意使    4、2    5、

6、    7、    8、8      9、        10、40

11、    12、4       13、    14、

二、解答題:本大題共6小題,計90分。解答應寫出必要的文字說明,證明過程或演算步驟,請把答案寫在答題紙的指定區(qū)域內。

15、解:(1)解:,

,有,

解得。                                         ……7分

(2)解法一:       ……11分

             。  ……14分

  解法二:由(1),,得

   

                                        ……10分

于是

               ……12分

代入得。            ……14分

16、證明:(1)∵

                                          ……4分

(2)令中點為,中點為,連結、

     ∵的中位線

           ……6分   

又∵

     ……8分

     ∴

     ∵為正

         ……10分

     ∴

     又∵,

 ∴四邊形為平行四邊形    ……12分

    ……14分

17、解:(1)設米,,則

                                                ……2分

                                            ……4分

                                            ……5分

(2)                   ……7分

      

     

     此時                                               ……10分

(3)∵

,                       ……11分

時,

上遞增                       ……13分

此時                                                ……14分

答:(1)

    (2)當的長度是4米時,矩形的面積最小,最小面積為24平方米;

    (3)當的長度是6米時,矩形的面積最小,

最小面積為27平方米。                              ……15分

18、(1)解:①若直線的斜率不存在,即直線是,符合題意。   ……2分

②若直線斜率存在,設直線,即。

由題意知,圓心以已知直線的距離等于半徑2,即:,

解之得                                                  ……5分

所求直線方程是,                            ……6分

(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設直線方程為

                       ……8分

又直線垂直,由 ……11分

……13分

             為定值。

   故是定值,且為6。                            ……15分

19、解:(1)由題意得,                             ……2分

,    ∴    ……3分

,∴

單調增函數(shù),                                             ……5分

對于恒成立。      ……6分

(2)方程;   ∴  ……7分

     ∵,∴方程為                      ……9分

     令,

      ∵,當時,,∴上為增函數(shù);

     時,,  ∴上為減函數(shù),    ……12分

     當時,                     ……13分

,            

∴函數(shù)、在同一坐標系的大致圖象如圖所示,

∴①當,即時,方程無解。

②當,即時,方程有一個根。

③當,即時,方程有兩個根。    ……16分

 

 

 

 

 

 

 

 

第Ⅱ部分(附加卷)

一、必做題

21、解:(1)由

同步練習冊答案