正項數(shù)列滿足.Sn為其前n項和.且. 查看更多

 

題目列表(包括答案和解析)

(12分)正項數(shù)列滿足,Sn為其前n項和,且(n≥1).

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)等比數(shù)列的各項為正,其前n項和為Tn,且b1b2b3=8,又成等差數(shù)列,求Tn.

查看答案和解析>>

12、已知正項數(shù)列{an},其前n項和Sn滿足6Sn=an2+3an+2,且a1,a3,a11成等比數(shù)列,則數(shù)列{an}的通項為
an=3n-1

查看答案和解析>>

已知正項數(shù)列{an}滿足:a1=1,Sn=
1
2
(an+
1
an
)
,其中Sn為其前n項和,則Sn=
n
n

查看答案和解析>>

數(shù)列{an}的前n項和為Sn(n∈N*),點(an,Sn)在直線y=2x-3n上,
(1)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c的值;
(2)數(shù)列{an}中是否存在三項,它們可以構(gòu)成等差數(shù)列?若存在,請求出一組適合條件的項;若不存在,請說明理由.
(3)若bn=
1
3
an
+1,請求出一個滿足條件的指數(shù)函數(shù)g(x),使得對于任意的正整數(shù)n恒有
n
k=1
g(k)
(bk+1)(bk+1+1)
1
3
成立,并加以證明.(其中為連加號,如:
n
i-1
an=a1+a2+…+an

查看答案和解析>>

數(shù)列{an}是公差不為0的等差數(shù)列,其前n項和為Sn,且S9=135,a3,a4,a12成等比數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)是否存在正整數(shù)m,使
a
2
m
+
a
2
m+2
2am+1
仍為數(shù)列{an}中的一項?若存在,求出滿足要求的所有正整數(shù)m;若不存在,說明理由.

查看答案和解析>>

一.選擇題

序號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

C

A

A

C

B

D

A

 

二填空題

13. 2或8;        14. ;            15.;           16..

三.解答題

17.解:(Ⅰ)

………………………………………………………………4分

…………………………6分

(Ⅱ) …………………………………………………8分

…………………………………………………………………………10分

………………………………………………………………………………12分

 

18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4. ……………………………2分

.………………………………………………………………4分

則V=.     ……………………………………………………………… 6分

(Ⅱ)∵PA=CA,F(xiàn)為PC的中點,∴AF⊥PC.            ……………………………………8分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

∵E為PD中點,F(xiàn)為PC中點,∴EF∥CD.則EF⊥PC.     ………………………………10分

∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分

 

19.設(shè)第一個匣子里的三把鑰匙為A,B,C,第二個匣子里的三把鑰匙為a,b,c(設(shè)A,a能打開所有門,B只能打開第一道門,b只能打開第二道門,C,c不能打開任何一道門)

(Ⅰ)第一道門打不開的概率為;……………………………………………………………5分

(Ⅱ)能進入第二道門的情況有Aa,Ab,Ac,Ba,Bb,而二把鑰匙的不同情況有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9種,故能進入第二道門的概率為……………………………………………………………12分

 

20.(Ⅰ)依題

 

…………………………………………………3分

為等差數(shù)列,a1=1,d=2

………………………………………………………………………………………………5分

(Ⅱ)設(shè)公比為q,則由b1b2b3=8,bn>0…………………………………………………6分

成等差數(shù)列

………………………………………………………………………………………8分

…………………………………………………………………………………10分

……………………………………………………………………12分

 

21解:(Ⅰ)依題PN為AM的中垂線

…………………………………………………2分

又C(-1,0),A(1,0)

所以N的軌跡E為橢圓,C、A為其焦點…………………………………………………………4分

a=,c=1,所以為所求………………………………………………………5分

(Ⅱ)設(shè)直線的方程為:y=k(x-1),代入橢圓E的方程:x2+2y2=2得:

(1+2k2)x2-4k2x+2k2-2=0………………(1)

設(shè)G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個根.

…………………………………………………………7分

依題

………………………………………………………9分

解得:………………………………………………………………………12分

 

22.解法(一):

   時,……①

時,恒成立,

時,①式化為……②

時,①式化為……③…………………………………………………5分

,則…………………………7分

所以

故由②,由③………………………………………………………………………13分

綜上時,恒成立.………………………………………………14分

解法(二):

   時,……①

時,,不合題意…………………………………………………2分

恒成立

上為減函數(shù),

,矛盾,…………………………………………………………………………………5分

=

   若,,故在[-1,1]內(nèi),

,得,矛盾.

依題意,  解得

綜上為所求.……………………………………………………………………………14分

 

 

 

 

 

 

 


同步練習(xí)冊答案