題目列表(包括答案和解析)
(本題滿分14分)
已知實數(shù),曲線與直線的交點為(異于原點),在曲線 上取一點,過點作平行于軸,交直線于點,過點作平行于軸,交曲線于點,接著過點作平行于軸,交直線于點,過點作平行于軸,交曲線于點,如此下去,可以得到點,,…,,… . 設(shè)點的坐標(biāo)為,.
(Ⅰ)試用表示,并證明;
(Ⅱ)試證明,且();
(Ⅲ)當(dāng)時,求證: ().(本題滿分14分)
已知函數(shù)圖象上一點處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)若方程在內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));
(Ⅲ)令,若的圖象與軸交于,(其中),的中點為,求證:在處的導(dǎo)數(shù).
(本題滿分14分)
已知曲線方程為,過原點O作曲線的切線
(1)求的方程;
(2)求曲線,及軸圍成的圖形面積S;
(3)試比較與的大小,并說明理由。(本題滿分14分)
已知中心在原點,對稱軸為坐標(biāo)軸的橢圓,左焦點,一個頂點坐標(biāo)為(0,1)
(1)求橢圓方程;
(2)直線過橢圓的右焦點交橢圓于A、B兩點,當(dāng)△AOB面積最大時,求直線方程。
(本題滿分14分)
如圖,在直三棱柱中,,,求二面角的大小。
一、填空題(本大題滿分60分,共12小題,每小題滿分5分)
10. 6 11.①⑤ 12. 2
二、選擇題(本大題滿分16分,共4小題,每小題滿分4分)
三、解答題(本大題滿分74,共5小題)
17.解:(1)取BC的中點F,連接EF、AF,則EF//PB,
所以∠AEF就是異面直線AE和PB所成角或其補角;
……………3分
∵∠BAC=60°,PA=AB=AC=2,PA⊥平面ABC,
(2)因為E是PC中點,所以E到平面ABC的距離為 …………10分
18.(本題滿分14分)
19.(本題滿分14分)
20.(本題滿分16分,第1小題滿分6分,第2小題滿分10分)
(3)都是等比數(shù)列,且是單調(diào)遞增的數(shù)列;
雪花曲線的特性是周長無限增大而面積有限的圖形。 ………………16分
(第3小題酌情給分)
21.(本題20分,第1小題滿分4分,第2小題滿分6分,第3小題6分,第4小題4分)
消去
(3)設(shè)F1、F2是橢圓的兩個焦點,點F1、F2到直線
的距離分別為d1、d2,且F1、F2在直線L的同側(cè)。那么直線L與橢圓相交的充要條件為:;直線L與橢圓M相切的充要條件為:;直線L與橢圓M相離的充要條件為: ……14分
命題得證。
(寫出其他的充要條件僅得2分,未指出“F1、F2在直線L的同側(cè)”得3分)
(4)可以類比到雙曲線:設(shè)F1、F2是雙曲線的兩個焦點,點F1、F2到直線距離分別為d1、d2,且F1、F2在直線L的同側(cè)。那么直線L與雙曲線相交的充要條件為:;直線L與雙曲線M相切的充要條件為:;直線L與雙曲線M相離的充要條件為:
………………20分
(寫出其他的充要條件僅得2分,未指出“F1、F2在直線L的同側(cè)”得3分)
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com