11.如圖直線與的三邊交于三點(diǎn).若.則點(diǎn)分所成的比是 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖所示,點(diǎn)A(1,0).點(diǎn)R在y軸上運(yùn)動(dòng),T在x軸上,N為動(dòng)點(diǎn),且
RT
RA
=0,
RN
+
RT
=0,
(1)設(shè)動(dòng)點(diǎn)N的軌跡為曲線C,求曲線C的方程;
(2)過(guò)點(diǎn)B(-2,0)的直線l與曲線C交于點(diǎn)P、Q,若在曲線C上存在點(diǎn)M,使得△MPQ為以PQ為斜邊的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

如圖,直線ll:y=2x與直線l2:y=-2x之間的陰影區(qū)域(不含邊界)記為w,其左半部分記為w1,右半部分記為W2
(1)分別用不等式組表示w1和w2
(2)若區(qū)域W中的動(dòng)點(diǎn)P(x,y)到l1,l2的距離之積等于4,求點(diǎn)P的軌跡C的方程;
(3)設(shè)不過(guò)原點(diǎn)的直線l與曲線C相交于Ml,M2兩點(diǎn),且與ll,l2如分別交于M3,M4兩點(diǎn).求證△OMlM2的重心與△OM3M4的重心重合.
【三角形重心坐標(biāo)公式:△ABC的頂點(diǎn)坐標(biāo)為A(xl,y1),B(x2,y2),C(x3,y3),則△ABC的重心坐標(biāo)為(
x1+x2+x3
3
,
y1+y2+y3
3
)】

查看答案和解析>>

如圖,F(xiàn)1、F2是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),過(guò)F1的直線l與C的左、右2個(gè)分支分別交于點(diǎn)A、B.若△ABF2為等邊三角形,則雙曲線的離心率為( 。

查看答案和解析>>

如圖,F(xiàn)1,F(xiàn)2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左右焦點(diǎn),過(guò)F1的直線l與C的左、右兩支分別交于A,B兩點(diǎn).若△ABF2為等邊三角形,則雙曲線的離心率為
7
7

查看答案和解析>>

如圖,F(xiàn)1,F(xiàn)2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),過(guò)F2的直線與雙曲線C交于A,B兩點(diǎn).若△ABF1為等邊三角形,則雙曲線的離心率為( 。

查看答案和解析>>


同步練習(xí)冊(cè)答案