(Ⅰ)設(shè).求a和k的值, 查看更多

 

題目列表(包括答案和解析)

設(shè)向量
a
=(x,2),
b
=(x+n,2x-1) (n∈N+)
,函數(shù)y=
a
b
在[0,1]上的最小值與最大值的和為an,又?jǐn)?shù)列{bn}滿足:nb1+(n-1)b2+…+bn=(
9
10
)n-1+(
9
10
)n-2+…+(
9
10
)+1

(1)求證:an=n+1;
(2)求bn的表達(dá)式;
(3)cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立?證明你的結(jié)論.

查看答案和解析>>

設(shè)向量
a
=(x,2),
b
=(x+n,2x-1) (n∈N+)
,函數(shù)y=
a
b
在[0,1]上的最小值與最大值的和為an,又?jǐn)?shù)列{bn}滿足:nb1+(n-1)b2+…+bn=(
9
10
)n-1+(
9
10
)n-2+…+(
9
10
)+1

(1)求證:an=n+1;
(2)求bn的表達(dá)式;
(3)cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立?證明你的結(jié)論.

查看答案和解析>>

設(shè)等比數(shù)列{an}的首項為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項;等差數(shù)列{bn}滿足2n2-(t+bn)n+
32
bn
=0(t∈R,n∈N*).
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ) 若對任意n∈N*,有anbn+1+λanan+1≥bnan+1成立,求實數(shù)λ的取值范圍;
(Ⅲ)對每個正整數(shù)k,在ak和a k+1之間插入bk個2,得到一個新數(shù)列{cn}.設(shè)Tn是數(shù)列{cn}的前n項和,試求滿足Tm=2cm+1的所有正整數(shù)m.

查看答案和解析>>

(2012•鐵嶺模擬)設(shè)函數(shù)f(x)=x2,g(x)=alnx+bx(a>0).
(1)若f(1)=g(1),f′(1)=g′(1),求F(x)=f(x)-g(x)的極小值;
(2)在(1)的結(jié)論下,是否存在實常數(shù)k和m,使得f(x)≥kx+m和g(x)≤kx+m成立?若存在,求出k和m,若不存在,說明理由.

查看答案和解析>>

設(shè)函數(shù)f(x)=x2,g(x)=alnx+bx(a>0).
(1)若f(1)=g(1),f′(1)=g′(1),求F(x)=f(x)-g(x)的極小值;
(2)在(1)的結(jié)論下,是否存在實常數(shù)k和m,使得f(x)≥kx+m和g(x)≤kx+m成立?若存在,求出k和m,若不存在,說明理由.

查看答案和解析>>


同步練習(xí)冊答案